Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 15: 1403279, 2024.
Article in English | MEDLINE | ID: mdl-38912345

ABSTRACT

Biodegradation was considered a promising and environmentally friendly method for treating environmental pollution caused by diuron. However, the mechanisms of biodegradation of diuron required further research. In this study, the degradation process of diuron by Achromobacter xylosoxidans SL-6 was systematically investigated. The results suggested that the antioxidant system of strain SL-6 was activated by adding diuron, thereby alleviating their oxidative stress response. In addition, degradation product analysis showed that diuron in strain SL-6 was mainly degraded by urea bridge cleavage, dehalogenation, deamination, and ring opening, and finally cis, cis-muconic acid was generated. The combined analysis of metabolomics and transcriptomics revealed the biodegradation and adaptation mechanism of strain SL-6 to diuron. Metabolomics analysis showed that after the strain SL-6 was exposed to diuron, metabolic pathways such as tricarboxylic acid cycle (cis, cis-muconic acid), glutathione metabolism (oxidized glutathione), and urea cycle (arginine) were reprogrammed in the cells. Furthermore, diuron could induce the production of membrane transport proteins in strain SL-6 cells and overexpress antioxidant enzyme genes, finally ultimately promoting the up-regulation of genes encoding amide hydrolases and dioxygenases, which was revealed by transcriptomics studies. This work enriched the biodegradation mechanism of phenylurea herbicides and provided guidance for the removal of diuron residues in the environment and promoting agriculture sustainable development.

2.
J Agric Food Chem ; 72(5): 2526-2535, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277640

ABSTRACT

To promote the growth and yield of crops, it is necessary to develop an effective silicon fertilizer. Herein, a new type of 2 nm silicon quantum dot (SiQD) was developed, and the phenotypic, biochemical, and metabolic responses of rice seedlings treated with SiQDs were investigated. The results indicated that the foliar application of SiQDs could significantly improve the growth of rice seedlings by increasing the uptake of nutrient elements and activating the antioxidative defense system. Furthermore, metabolomics revealed that the supply of SiQDs could significantly up-regulate several antioxidative metabolites (oxalic acid, maleic acid, glycine, lysine, and proline) by reprogramming the nitrogen- and carbon-related biological pathways. The findings provide a new strategy for developing an effective and promising quantum fertilizer in agriculture.


Subject(s)
Oryza , Quantum Dots , Antioxidants/metabolism , Silicon/pharmacology , Seedlings/metabolism , Fertilizers , Nitrogen/metabolism
3.
Sci Total Environ ; 879: 163089, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37001268

ABSTRACT

Zero-valent iron nanoparticles (nZVI) were widely used material in environmental remediation, which has attracted increasing concern for their safety. Previous studies have shown that the addition of nZVI could inhibit rice seedling growth. However, the effect of nZVI on the soil-rice system during the entire life cycle was not reported. Furthermore, the effect of nZVI on the quality of rice grain has also not been studied. Therefore, we investigated the effects of rice grain yield and nutritional quality upon exposure nZVI. The results showed that the soil pH value, redox potential and Fe (II) content in the nZVI-treated group were decreased in a dose-dependent manner. Interestingly, 2500 mg/kg nZVI significantly decreased the relative abundance of several functional microbial communities (10.52-73.53 %) associated with carbon and nitrogen cycles in response to plants compared to the control. Meanwhile, the nZVI treatment clearly reduced grain yield (8.71-18.21 %). Furthermore, the content of protein (51.72-57.79 %) and several essential nutrients (Zn, Cu, Mn and Mo) in the nZVI-treated grains was also decreased in a dose-dependent manner. The results of grain metabolomics indicated that nZVI could interfere with the relative expression of lysine and glutathione by regulating the metabolic pathways of antioxidant and protein synthesis in rice.


Subject(s)
Environmental Restoration and Remediation , Metal Nanoparticles , Oryza , Soil Pollutants , Iron/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Soil/chemistry , Nutritive Value , Soil Pollutants/analysis
4.
J Agric Food Chem ; 71(6): 2773-2783, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36703540

ABSTRACT

Bacterial fruit blotch is one of the most destructing diseases of melon producing-regions. Here, zinc oxide quantum dots (ZnO QDs) were synthesized, and their antibacterial activity against Acidovorax citrulli was investigated. The results indicated that the obtained ZnO QDs displayed 5.7-fold higher antibacterial activity than a commercial Zn-based bactericide (zinc thiazole). Interestingly, the antibacterial activity of ZnO QDs irradiated with light was 1.8 times higher than that of the dark-treated group. It was because ZnO QDs could induce the generation of hydroxyl radicals and then up-regulate the expression of oxidative stress-related genes, finally leading to the loss of cell membrane integrity. A pot experiment demonstrated that foliar application of ZnO QDs significantly reduced the bacterial fruit blotch disease incidence (32.0%). Furthermore, the supply of ZnO QDs could improve the growth of infected melon seedlings by activating the antioxidant defense system. This work provides a promising light-activated quantum-bactericide for the management of pathogenic bacterial infections in melon crop protection.


Subject(s)
Bacterial Infections , Cucurbitaceae , Quantum Dots , Zinc Oxide , Zinc Oxide/pharmacology , Seedlings , Fruit/microbiology , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL