Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2405955, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924647

ABSTRACT

Obstructive sleep apnea syndrome (OSAS), characterized by chronic intermittent hypoxia (CIH), is an independent risk factor for aggravating non-alcoholic steatohepatitis (NASH). The prevailing mouse model employed in CIH research is inadequate for the comprehensive exploration of the impact of CIH on NASH development due to reduced food intake observed in CIH-exposed mice, which deviates from human responses. To address this issue, a pair-feeding investigation with CIH-exposed and normoxia-exposed mice is conducted. It is revealed that CIH exposure aggravates DNA damage, leading to hepatic fibrosis and inflammation. The analysis of genome-wide association study (GWAS) data also discloses the association between Eepd1, a DNA repair enzyme, and OSAS. Furthermore, it is revealed that CIH triggered selective autophagy, leading to the autophagic degradation of Eepd1, thereby exacerbating DNA damage in hepatocytes. Notably, Eepd1 liver-specific knockout mice exhibit aggravated hepatic DNA damage and further progression of NASH. To identify a therapeutic approach for CIH-induced NASH, a drug screening is conducted and it is found that Retigabine dihydrochloride suppresses CIH-mediated Eepd1 degradation, leading to alleviated DNA damage in hepatocytes. These findings imply that targeting CIH-mediated Eepd1 degradation can be an adjunctive approach in the treatment of NASH exacerbated by OSAS.

2.
Diabetes ; 73(5): 682-700, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38394642

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is considered a risk factor for cardiovascular and cerebrovascular disease owing to its close association with coagulant disturbances. However, the precise biological functions and mechanisms that connect coagulation factors to NAFLD pathology remain inadequately understood. Herein, with unbiased bioinformatics analyses followed by functional testing, we demonstrate that hepatic expression of coagulation factor VII (FVII) decreases in patients and mice with NAFLD/nonalcoholic steatohepatitis (NASH). By using adenovirus-mediated F7-knockdown and hepatocyte-specific F7-knockout mouse models, our mechanistic investigations unveil a noncoagulant function of hepatic FVII in mitigating lipid accumulation and lipotoxicity. This protective effect is achieved through the suppression of fatty acid uptake, orchestrated via the AKT-CD36 pathway. Interestingly, intracellular FVII directly interacts with AKT and PP2A, thereby promoting their association and triggering the dephosphorylation of AKT. Therapeutic intervention through adenovirus-mediated liver-specific overexpression of F7 results in noteworthy improvements in liver steatosis, inflammation, injury, and fibrosis in severely afflicted NAFLD mice. In conclusion, our findings highlight coagulation factor FVII as a critical regulator of hepatic steatosis and a potential target for the treatment of NAFLD and NASH.


Subject(s)
Factor VII , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Factor VII/genetics , Factor VII/metabolism , Fatty Acids/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL