Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
1.
World J Gastroenterol ; 30(24): 3120-3122, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983961

ABSTRACT

Immune checkpoint inhibitors (ICIs) are widely used due to their effectiveness in treating various tumors. Immune-related adverse events (irAEs) are defined as adverse effects resulting from ICI treatment. Gastrointestinal irAEs are a common type of irAEs characterized by intestinal side effects, such as diarrhea and colitis, which may lead to the discontinuation of ICIs.


Subject(s)
Gastritis , Immune Checkpoint Inhibitors , Humans , Immune Checkpoint Inhibitors/adverse effects , Gastritis/chemically induced , Gastritis/immunology , Gastritis/diagnosis , Gastritis/drug therapy , Neoplasms/drug therapy , Neoplasms/immunology
2.
Int Immunopharmacol ; 138: 112651, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986303

ABSTRACT

Peripheral blood mononuclear cells (PBMC), sourced autologously, offer numerous advantages when procured: easier acquisition process, no in vitro amplification needed, decreased intervention and overall increased acceptability make PBMC an attractive candidate for cell therapy treatment. However, the exact mechanism by which PBMC treat diseases remains poorly understood. Immune imbalance is the pathological basis of many diseases, with macrophages playing a crucial role in this process. However, research on the role and mechanisms of PBMC in regulating macrophages remains scarce. This study employed an in vitro co-culture model of PBMC and RAW264.7 macrophages to explore the role and mechanisms of PBMC in regulating macrophages. The results showed that the co-culturing led to decreased expression of inflammatory cytokines and increased expression of anti-inflammatory cytokines in RAW264.7 or in the culture supernatant. Additionally, the pro-inflammatory, tissue matrix-degrading M1 macrophages decreased, while the anti-inflammatory, matrix-synthesizing, regenerative M2 macrophages increased in both RAW264.7 and monocytes within PBMC. Moreover, co-cultured macrophages exhibited a significantly decreased p-STAT1/STAT1 ratio, while the p-STAT6/STAT6 ratio significantly increased. This suggests that PBMC may inhibit M1 macrophage polarization by blocking STAT1 signaling cascades and may promote M2 macrophage polarization through the activation of STAT6 signaling cascades. Overall, this study sheds light on the role and mechanism of PBMC in regulating macrophages. Moreover, it was found that monocytes within co-cultured PBMC differentiated into M2 macrophages in the presence of macrophages. This finding provides experimental evidence for the use of PBMC in treating inflammatory diseases, especially macrophage-depleting inflammatory diseases such as osteoarthritis.

3.
PLoS Med ; 21(7): e1004419, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980837

ABSTRACT

BACKGROUND: The association between years of non-diabetes status after diagnosis of impaired glucose tolerance (IGT) and the risk of long-term death and cardiovascular outcomes needed to be clarified. METHODS AND FINDINGS: In this post hoc analysis, we included 540 individuals with IGT who participated in the original Da Qing Diabetes Prevention Study (DQDPS). In the DQDPS, all participants were diagnosed with IGT by a 75 g oral glucose tolerance test and randomized to intervention or control groups with a 6-year lifestyle intervention trial. After the completion of the trial, death, cardiovascular events, and microvascular complications were monitored over a 30-year follow-up. In this post hoc analysis, the Cox analysis assessed the extended risk of these outcomes in individuals who either remained non-diabetes status or progressed to diabetes at the end of 2, 4, and 6 years after diagnosis of IGT. In all participants, the difference in the cumulative incidence rate of the outcomes between the diabetes and non-diabetes group gradually increased over 30 years. Compared with the diabetes group, a significantly lower risk of all-cause death (hazard ratio [HR]: 0.74; 95% confidence interval [CI]: 0.57 to 0.97, p = 0.026), cardiovascular events (HR: 0.63; 95% CI: 0.49 to 0.82, p < 0.001), and microvascular complications (HR: 0.62; 95% CI: 0.45 to 0.86, p = 0.004) first emerged in individuals who remained non-diabetes at the 4 years visit, whereas the significant risk reduction in cardiovascular death was first observed at the end of 6 years (HR: 0.56; 95% CI: 0.39 to 0.81, p = 0.002) after adjustment for age, sex, smoking status, BMI, systolic blood pressure, blood glucose, total cholesterol, intervention, and medications (including insulin plus oral hypoglycaemics, antihypertensives, and lipid-lowering agents). The results in the original intervention group alone were similar to the whole group. The main limitations of our study are the limited number of participants and the sole ethnicity of the Chinese population. CONCLUSIONS: In this study, we observed that maintaining several years of non-diabetes status after IGT diagnosis was associated with a significant reduction in long-term risk of death and vascular complications, and for most of these outcomes, maintaining at least 4 years of non-diabetes status may be needed to achieve a significant risk reduction.


Subject(s)
Glucose Intolerance , Humans , Male , Glucose Intolerance/diagnosis , Glucose Intolerance/complications , Female , Middle Aged , Glucose Tolerance Test , China/epidemiology , Aged , Cardiovascular Diseases/mortality , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Risk Factors , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Adult
4.
Fungal Biol ; 128(4): 1815-1826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876534

ABSTRACT

Endophytic fungi, pivotal in facilitating plant co-evolution, significantly enhance plant growth, stress resistance, and environmental adaptability. Despite their importance, the spatial distribution of stem endophytic fungi (SEF) within host plants remains poorly characterized. Here, we employed high-throughput sequencing to conduct a comparative analysis of SEF communities in Mussaenda pubescens on a regional scale. Our findings reveal that whole-SEF communities were overwhelmingly dominated by members of the phylum Ascomycota, accounting for 85.9 %, followed by Basidiomycota at 13.9 %, and that alpha diversity within the whole-SEF community of M. pubescens remains relatively consistent across sampling sites. However, significant variation was observed within conditionally abundant taxa (CAT), conditionally rare or abundant taxa (CRAT), and conditionally rare taxa (CRT). Climatic factors emerged as the primary influence on SEF community distribution, followed by spatial distance and stem chemical properties. Neutral community modeling results suggested that both stochastic and deterministic processes play a role in shaping whole-SEF communities, with deterministic processes having a stronger influence on CRT subcommunities. Furthermore, the CRT co-occurrence network exhibited a more complex structure, characterized by higher values of network betweenness and degree relative to CAT and CRAT subcommunities. These findings enhance our understanding of community assembly and ecological interactions between stem fungal endophytes, presenting opportunities for harnessing fungal resources for the benefit of humanity.


Subject(s)
Endophytes , Plant Stems , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Plant Stems/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , High-Throughput Nucleotide Sequencing , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/isolation & purification , Biodiversity
5.
Biomed Phys Eng Express ; 10(4)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923907

ABSTRACT

Objective: To summarize our institutional prostate stereotactic body radiation therapy (SBRT) experience using auto beam hold (ABH) technique for intrafractional prostate motion and assess ABH tolerance of 10-millimeter (mm) diameter.Approach: Thirty-two patients (160 fractions) treated using ABH technique between 01/2018 and 03/2021 were analyzed. During treatment, kV images were acquired every 20-degree gantry rotation to visualize 3-4 gold fiducials within prostate to track target motion. If the fiducial center fell outside the tolerance circle (diameter = 10 mm), beam was automatically turned off for reimaging and repositioning. Number of beam holds and couch translational movement magnitudes were recorded. Dosimetric differences from intrafractional motion were calculated by shifting planned isocenter.Main Results: Couch movement magnitude (mean ± SD) in vertical, longitudinal and lateral directions were -0.7 ± 2.5, 1.4 ± 2.9 and -0.1 ± 0.9 mm, respectively. For most fractions (77.5%), no correction was necessary. Number of fractions requiring one, two, or three corrections were 15.6%, 5.6% and 1.3%, respectively. Of the 49 corrections, couch shifts greater than 3 mm were seen primarily in the vertical (31%) and longitudinal (39%) directions; corresponding couch shifts greater than 5 mm occurred in 2% and 6% of cases. Dosimetrically, 100% coverage decreased less than 2% for clinical target volume (CTV) (-1 ± 2%) and less than 10% for PTV (-10 ± 6%). Dose to bladder, bowel and urethra tended to increase (Bladder: ΔD10%:184 ± 466 cGy, ΔD40%:139 ± 241 cGy, Bowel: ΔD1 cm3:54 ± 129 cGy; ΔD5 cm3:44 ± 116 cGy, Urethra: ΔD0.03 cm3:1 ± 1%). Doses to the rectum tended to decrease (Rectum: ΔD1 cm3:-206 ± 564 cGy, ΔD10%:-97 ± 426 cGy; ΔD20%:-50 ± 251 cGy).Significance: With the transition from conventionally fractionated intensity modulated radiation therapy to SBRT for localized prostate cancer treatment, it is imperative to ensure that dose delivery is spatially accurate for appropriate coverage to target volumes and limiting dose to surrounding organs. Intrafractional motion monitoring can be achieved using triggered imaging to image fiducial markers and ABH to allow for reimaging and repositioning for excessive motion.


Subject(s)
Movement , Prostate , Prostatic Neoplasms , Radiometry , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Male , Prostatic Neoplasms/radiotherapy , Radiosurgery/methods , Prostate/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Radiometry/methods , Fiducial Markers , Motion , Dose Fractionation, Radiation , Radiotherapy, Intensity-Modulated/methods , Urinary Bladder , Rectum , Organs at Risk/radiation effects
6.
Front Oncol ; 14: 1407795, 2024.
Article in English | MEDLINE | ID: mdl-38887235

ABSTRACT

Background: Breast cancer (BC) exhibits a high incidence rate, imposing a substantial burden on healthcare systems. Novel drug targets are urgently needed for BC. Mendelian randomization (MR) has gained widespread application for identifying fresh therapeutic targets. Our endeavor was to pinpoint circulatory proteins causally linked to BC risk and proffer potential treatment targets for BC. Methods: Through amalgamating protein quantitative trait loci from 2,004 circulating proteins and comprehensive genome-wide association study data from the Breast Cancer Association Consortium, we conducted MR analyses. Employing Steiger filtering, bidirectional MR, Bayesian colocalization, phenotype scanning, and replication analyses, we further solidified MR study outcomes. Additionally, protein-protein interaction (PPI) network was harnessed to unveil latent associations between proteins and prevailing breast cancer medications. The phenome-wide MR (Phe-MR) was employed to assess potential side effects and indications for the druggable proteins of BC. Finally, we further affirmed the drugability of potential drug targets through mRNA expression analysis and molecular docking. Results: Through comprehensive analysis, we identified five potential drug targets, comprising four (TLR1, A4GALT, SNUPN, and CTSF) for BC and one (TLR1) for BC_estrogen receptor positive. None of these five potential drug targets displayed reverse causation. Bayesian colocalization suggested that these five latent drug targets shared variability with breast cancer. All drug targets were replicated within the deCODE cohort. TLR1 exhibited PPI with current breast cancer therapeutic targets. Furthermore, Phe-MR unveiled certain adverse effects solely for TLR1 and SNUPN. Conclusion: Our study uncovers five prospective drug targets for BC and its subtypes, warranting further clinical exploration.

7.
J Clin Microbiol ; : e0047924, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856218

ABSTRACT

The diagnosis of invasive pulmonary fungal disease depends on histopathology and mycological culture; there are few studies on touch imprints of bronchoscopic biopsies or lung tissue biopsies for the diagnosis of pulmonary filamentous fungi infections. The purpose of the present study was to explore the detection accuracy of rapid on-site evaluation of touch imprints of bronchoscopic biopsies or lung tissue biopsies for the filamentous fungi, and it aims to provide a basis for initiating antifungal therapy before obtaining microbiological evidence. We retrospectively analyzed the diagnosis and treatment of 44 non-neutropenic patients with invasive pulmonary filamentous fungi confirmed by glactomannan assay, histopathology, and culture from February 2017 to December 2023. The diagnostic positive rate and sensitivity of rapid on-site evaluation for these filamentous fungi identification, including diagnostic turnaround time, were calculated. Compared with the final diagnosis, the sensitivity of rapid on-site evaluation was 81.8%, and the sensitivity of histopathology, culture of bronchoalveolar lavage fluid, and glactomannan assay of bronchoalveolar lavage fluid was 86.4%, 52.3%, and 68.2%, respectively. The average turnaround time of detecting filamentous fungi by rapid on-site evaluation was 0.17 ± 0.03 hours, which was significantly faster than histopathology, glactomannan assay, and mycological culture. A total of 29 (76.3%) patients received earlier antifungal therapy based on ROSE diagnosis and demonstrated clinical improvement. Rapid on-site evaluation showed good sensitivity and accuracy that can be comparable to histopathology in identification of pulmonary filamentous fungi. Importantly, it contributed to the triage of biopsies for further microbial culture or molecular detection based on the preliminary diagnosis, and the decision on early antifungal therapy before microbiological evidence is available.

8.
J Environ Manage ; 362: 121312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824888

ABSTRACT

Ectomycorrhizal (EcM) fungi play an important role in nutrient cycling and community ecological dynamics and are widely acknowledged as important components of forest ecosystems. However, little information is available regarding EcM fungal community structure or the possible relationship between EcM fungi, soil properties, and forestry activities in Pinus massoniana forests. In this study, we evaluated soil properties, extracellular enzyme activities, and fungal diversity and community composition in root and soil samples from pure Pinus massoniana natural forests, pure P. massoniana plantations, and P. massoniana and Liquidambar gracilipes mixed forests. The mixed forest showed the highest EcM fungal diversity in both root and bulk soil samples. Community composition and co-occurrence network structures differed significantly between forest types. Variation in the EcM fungal community was significantly correlated with the activities of ß-glucuronidase and ß-1,4-N-acetylglucosaminidase, whereas non-EcM fungal community characteristics were significantly correlated with ß-1,4-glucosidase and ß-glucuronidase activities. Furthermore, stochastic processes predominantly drove the assembly of both EcM and non-EcM fungal communities, while deterministic processes exerted greater influence on soil fungal communities in mixed forests compared to pure forests. Our findings may inform a deeper understanding of how the assembly processes and environmental roles of subterranean fungal communities differ between mixed and pure plantations and may provide insights for how to promote forest sustainability in subtropical areas.


Subject(s)
Forests , Mycorrhizae , Pinus , Soil Microbiology , Pinus/microbiology , Soil/chemistry , Biodiversity , Fungi , Ecosystem
9.
Neuroscience ; 552: 115-125, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909674

ABSTRACT

Recent studies have shown that the 5-HT1a receptor (5-HT1aR) in the central 5-HT (Serotonergic) system is involved in the pathophysiology of schizophrenia through its various receptors, and the dysfunction of the ventral hippocampus may be a key causative factor in schizophrenia. To date, whether the 5-HT1a receptor is involved in ventral hippocampal dysfunction and its internal mechanism remain unclear. In this study, schizophrenia-like animal model was induced by intraperitoneal injection of aspartate receptor antagonist MK-801 in male Sprague Dawley rats, and the role of 5-HT1aR in this animal model was investigated by bilaterally micro-infusing the 5-HT1aR antagonist WAY100635 into the ventral subiculum (vSub) of the hippocampus of rats. Behavioral experiments such as open field test (OFT) and prepulse inhibition (PPI) were performed. The results showed that MK-801 induced hyperactivity and impaired prepulse inhibition in rats, whereas, micro-infusion of 5-HT1aR antagonist WAY100635 into the vSub ameliorated these phenomena. Immunofluorescence analysis revealed that WAY100635 significantly increased the c-Fos expression in vSub. Western blot and immunohistochemical analysis showed that MK-801 induced up-regulation of 5-HT1aR and phospho-extracellular regulated protein kinase (p-ERK) pathway, while micro-infusion of the WAY100635 down-regulated 5-HT1aR and p-ERK in the vSub. Therefore, the results of the present study suggested that in vSub, the 5-HT1aR antagonist WAY100635 may attenuate MK-801-induced schizophrenia-like activity by modulating excitatory neurons and downregulating p-ERK.

10.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850218

ABSTRACT

Closed head injury is a prevalent form of traumatic brain injury with poorly understood effects on cortical neural circuits. Given the emotional and behavioral impairments linked to closed head injury, it is vital to uncover brain functional deficits and their driving mechanisms. In this study, we employed a robust viral tracing technique to identify the alteration of the neural pathway connecting the medial prefrontal cortex to the basolateral amygdala, and we observed the disruptions in neuronal projections between the medial prefrontal cortex and the basolateral amygdala following closed head injury. Remarkably, our results highlight that ZL006, an inhibitor targeting PSD-95/nNOS interaction, stands out for its ability to selectively reverse these aberrations. Specifically, ZL006 effectively mitigates the disruptions in neuronal projections from the medial prefrontal cortex to basolateral amygdala induced by closed head injury. Furthermore, using chemogenetic approaches, we elucidate that activating the medial prefrontal cortex projections to the basolateral amygdala circuit produces anxiolytic effects, aligning with the therapeutic potential of ZL006. Additionally, ZL006 administration effectively mitigates astrocyte activation, leading to the restoration of medial prefrontal cortex glutamatergic neuron activity. Moreover, in the context of attenuating anxiety-like behaviors through ZL006 treatment, we observe a reduction in closed head injury-induced astrocyte engulfment, which may correlate with the observed decrease in dendritic spine density of medial prefrontal cortex glutamatergic neurons.


Subject(s)
Amygdala , Anxiety , Head Injuries, Closed , Prefrontal Cortex , Animals , Prefrontal Cortex/drug effects , Male , Head Injuries, Closed/complications , Anxiety/drug therapy , Amygdala/drug effects , Mice , Neural Pathways/drug effects , Mice, Inbred C57BL , Disks Large Homolog 4 Protein/metabolism
11.
Mil Med Res ; 11(1): 30, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764065

ABSTRACT

BACKGROUND: Benign prostatic hyperplasia (BPH) is the most common disease in elderly men. There is increasing evidence that periodontitis increases the risk of BPH, but the specific mechanism remains unclear. This study aimed to explore the role and mechanism of the key periodontal pathogen Porphyromonas gingivalis (P. gingivalis) in the development of BPH. METHODS: The subgingival plaque (Sp) and prostatic fluid (Pf) of patients with BPH concurrent periodontitis were extracted and cultured for 16S rDNA sequencing. Ligature-induced periodontitis, testosterone-induced BPH and the composite models in rats were established. The P. gingivalis and its toxic factor P. gingivalis lipopolysaccharide (P.g-LPS) were injected into the ventral lobe of prostate in rats to simulate its colonization of prostate. P.g-LPS was used to construct the prostate cell infection model for mechanism exploration. RESULTS: P. gingivalis, Streptococcus oralis, Capnocytophaga ochracea and other oral pathogens were simultaneously detected in the Pf and Sp of patients with BPH concurrent periodontitis, and the average relative abundance of P. gingivalis was found to be the highest. P. gingivalis was detected in both Pf and Sp in 62.5% of patients. Simultaneous periodontitis and BPH synergistically aggravated prostate histological changes. P. gingivalis and P.g-LPS infection could induce obvious hyperplasia of the prostate epithelium and stroma (epithelial thickness was 2.97- and 3.08-fold that of control group, respectively), and increase of collagen fibrosis (3.81- and 5.02-fold that of control group, respectively). P. gingivalis infection promoted prostate cell proliferation, inhibited apoptosis, and upregulated the expression of inflammatory cytokines interleukin-6 (IL-6; 4.47-fold), interleukin-6 receptor-α (IL-6Rα; 5.74-fold) and glycoprotein 130 (gp130; 4.47-fold) in prostatic tissue. P.g-LPS could significantly inhibit cell apoptosis, promote mitosis and proliferation of cells. P.g-LPS activates the Akt pathway through IL-6/IL-6Rα/gp130 complex, which destroys the imbalance between proliferation and apoptosis of prostate cells, induces BPH. CONCLUSION: P. gingivalis was abundant in the Pf of patients with BPH concurrent periodontitis. P. gingivalis infection can promote BPH, which may affect the progression of BPH via inflammation and the Akt signaling pathway.


Subject(s)
Interleukin-6 , Porphyromonas gingivalis , Prostatic Hyperplasia , Receptors, Interleukin-6 , Male , Prostatic Hyperplasia/complications , Porphyromonas gingivalis/pathogenicity , Rats , Humans , Animals , Interleukin-6/analysis , Interleukin-6/metabolism , Prostate , Periodontitis/complications , Periodontitis/microbiology , Aged , Middle Aged , Rats, Sprague-Dawley , Disease Models, Animal , Signal Transduction/physiology
12.
J Agric Food Chem ; 72(22): 12582-12595, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788215

ABSTRACT

Renal tubular ectopic lipid deposition (ELD) plays a significant role in the development of chronic kidney disease, posing a great threat to human health. The present work aimed to explore the intervention effect and potential molecular mechanism of a purified tea polysaccharide (TPS3A) on renal tubular ELD. The results demonstrated that TPS3A effectively improved kidney function and slowed the progression of tubulointerstitial fibrosis in high-fat-diet (HFD)-exposed ApoE-/- mice. Additionally, TPS3A notably suppressed lipogenesis and enhanced lipolysis, as shown by the downregulation of lipogenesis markers (SREBP-1 and FAS) and the upregulation of lipolysis markers (HSL and ATGL), thereby reducing renal tubular ELD in HFD-fed ApoE-/- mice and palmitic-acid-stimulated HK-2 cells. The AMPK-SIRT1-FoxO1 axis is a core signal pathway in regulating lipid deposition. Consistently, TPS3A significantly increased the levels of phosphorylated-AMPK, SIRT1, and deacetylation of Ac-FoxO1. However, these effects of TPS3A on lipogenesis and lipolysis were abolished by AMPK siRNA, SIRT1 siRNA, and FoxO1 inhibitor, resulting in exacerbated lipid deposition. Taken together, TPS3A shows promise in ameliorating renal tubular ELD by inhibiting lipogenesis and promoting lipolysis through the AMPK-SIRT1-FoxO1 signaling pathway.


Subject(s)
Diet, High-Fat , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Polysaccharides , Animals , Lipogenesis/drug effects , Mice , Lipolysis/drug effects , Male , Diet, High-Fat/adverse effects , Humans , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Sirtuin 1/metabolism , Sirtuin 1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Camellia sinensis/chemistry , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Tea/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
13.
Article in English | MEDLINE | ID: mdl-38706356

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD), a key contributor to degenerative spinal diseases such as cervical spondylosis, significantly influences the quality of life of patients. Tuina, historically employed in the clinical management of cervical spondylosis, has demonstrated positive therapeutic outcomes; however, the mechanism of Tuina remains unclear. OBJECTIVE: This study examined the efficacy of Tuina in correcting the imbalanced structure of the cervical spine and its impact on apoptotic chondrocytes within the cervical disc. The underlying mechanisms were explored using a rabbit model of IVDD induced by dynamic and static imbalances. METHODS: The IVDD rabbit model was established by restraining the head in a downward position for 12 weeks (Model group). In the Tuina1 group, treatment was performed on the posterior cervical trapezius muscle daily for 2 weeks, whereas in the Tuina2 group, treatment was performed on both the posterior cervical trapezius and anterior sternocleidomastoid muscles daily for 2 weeks. After treatment, X-ray, micro-computed tomography (CT), histological staining, qRT-PCR, and western blotting were used to evaluate the mechanism by which Tuina inhibits chondrocyte apoptosis. RESULTS: The results demonstrated that Tuina treatment inhibited chondrocyte apoptosis in cervical discs by adjusting the neck structure balance, and a more significant therapeutic effect was observed in the Tuina2 group. Lateral cervical spine X-ray and CT scans in rabbits revealed notable improvements in cervical spine curvature and vertebral structure in the treatment groups compared with those in the Model group. Hematoxylin and eosin staining and TUNEL staining further confirmed the positive impact of Tuina treatment on intervertebral disc tissue morphology and chondrocyte apoptosis. Additionally, western blotting and immunohistochemical analysis showed that Tuina treatment suppressed chondrocyte apoptosis by downregulating Bax and caspase-3 while upregulating Bcl-2. Western blotting results further indicated that Tuina could activate the FAK/PI3K/Akt signaling pathway by mediating integrin-ß1. CONCLUSION: Tuina treatment inhibited chondrocyte apoptosis in cervical discs by activating the FAK/PI3K/Akt signaling pathway, providing convincing evidence to support Tuina treatment as a promising method for IVDD.

14.
Insect Sci ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728615

ABSTRACT

Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.

15.
J Environ Manage ; 359: 121041, 2024 May.
Article in English | MEDLINE | ID: mdl-38703651

ABSTRACT

Bisphenol analogues (BPs) have gained increasing attention in recent years due to their ubiquitousness and potential endocrine disrupting properties in environments. However, little information is available on their spatiotemporal distribution, source apportionment and ecological risk in river sediments, especially the case in river basins with a high population density and those typical regions with agricultural-urban gradient, where land use patterns and intensity of human activity are varying. In this study, field investigations of BPs in the sediment of the entire Qinhuai River Basin, a typical agricultural-suburban agricultural-urban gradient area, were conducted before and after the flood period. Thirty-two sites were sampled for six types of BPs, resulted in no significant difference in the concentration of ΣBPs between the two periods, with ΣBPs ranging from 3.92 to 151 ng/g and 2.16-59.0 ng/g, respectively. Bisphenol A (BPA) was the main contributor. Whereas a multivariate analysis of variance (MANOVA) suggested that the composition structure of BPs had been influenced by water periods. The land use patterns had an impact on the distribution of ΣBPs in river sediments, which was more significant in after the flood period, with ΣBPs in urban rivers was 1.85 times, 3.44 times, and 3.08 times higher than the suburban rivers, agricultural rivers, and reservoirs, respectively. Yet land use types did not significantly alter the composition structure of BPs. The correlation analysis between BPs and the physicochemical properties of sediments showed a significant positive correlation between BPA and total organic carbon (TOC). The positive matrix factorization model (PMF) suggested that BPs in sediments of the basin might be influenced by industrial coatings, textiles, electronics and biopharmaceuticals, as well as urban wastewater or solid waste generated from daily life. The ecological risk assessment posed by BPA, based on the risk quotient, indicated that the ecological risk of BPA in sediments was low for three indicator benthic organisms: crustaceans, worms, and mollusks. However, the risk of BPA in river sediments varied among different land use patterns, with the risk ranking as follows: reservoirs < agricultural rivers < suburban rivers < urban rivers.


Subject(s)
Benzhydryl Compounds , Environmental Monitoring , Geologic Sediments , Phenols , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Phenols/analysis , Benzhydryl Compounds/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , Endocrine Disruptors/analysis
17.
Diabetes Obes Metab ; 26(6): 2329-2338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488254

ABSTRACT

AIM: To evaluate whether 1-hour plasma glucose (1hPG) can be a comparable measurement to 2-hour plasma glucose (2hPG) in identifying individuals at high risk of developing diabetes. METHODS: A total of 1026 non-diabetic subjects in the Da Qing IGT and Diabetes Study were included and classified according to baseline postload 1hPG. The participants were followed up and assessed at 6-, 20- and 30year follow-up for outcomes including diabetes, all-cause and cardiovascular mortality, cardiovascular disease (CVD) events, and microvascular disease. We then conducted a proportional hazards analysis in this post hoc study to determine the risks of developing type 2 diabetes and its complications in a '1hPG-normal' group (1hPG <8.6 mmol/L) and a '1hPG-high' group (≥8.6 mmol/L). The predictive values of 1hPG and 2hPG were evaluated using a time-dependent receiver-operating characteristic (ROC) curve. RESULTS: Compared with the 1hPG-normal group, the 1hPG-high group had increased risk of diabetes (hazard ratio [HR] 4.45, 95% CI 3.43-5.79), all-cause mortality (HR 1.46, 95% CI 1.07-2.01), CVD mortality (HR 1.84, 95% CI 1.16-2.95), CVD events (HR 1.39, 95% CI 1.03-1.86) and microvascular disease (HR 1.70, 95% CI: 1.03-2.79) after adjusting for confounders. 1hPG exhibited a higher area under the ROC curve (AUC) for predicting diabetes than 2hPG during the long-term follow-up (AUC [1hPG vs. 2hPG]: 10 years: 0.86 vs. 0.84, p = 0.08; 20 years: 0.88 vs. 0.87, p = 0.04; 30 years: 0.85 vs. 0.82, p = 0.009). CONCLUSIONS: Elevated 1hPG level (≥8.6 mmol/L) was associated with increased risk of developing type 2 diabetes and its long-term complications, and could be considered as a suitable measurement for identifying individuals at high risk of type 2 diabetes.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Predictive Value of Tests , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Male , Female , Middle Aged , Blood Glucose/analysis , Blood Glucose/metabolism , Follow-Up Studies , China/epidemiology , Glucose Tolerance Test , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/blood , Cardiovascular Diseases/mortality , Glucose Intolerance/blood , Glucose Intolerance/diagnosis , Glucose Intolerance/complications , Adult , Diabetes Complications/blood , Diabetes Complications/epidemiology , Aged , Diabetic Angiopathies/epidemiology , Diabetic Angiopathies/blood , Diabetic Angiopathies/diagnosis , Diabetic Angiopathies/prevention & control , Diabetic Angiopathies/mortality , ROC Curve
18.
Funct Integr Genomics ; 24(2): 55, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38467948

ABSTRACT

Huang Qin decoction (HQD) is a traditional Chinese medicine formula for treating colitis, but the effects and molecular mechanism of action of HQD in colitis-associated carcinogenesis (CAC) are still unclear. Therefore, we aimed to determine the beneficial effects of HQD on CAC in mice and to reveal the underlying mechanism involved. AOM/DSS was used to induce CAC in mice, and the effects of HQD on tumorigenesis in mice were examined (with mesalazine serving as a positive control). Mesalazine or HQD treatment alleviated body weight loss and decreased the disease activity index in mice induced by AOM/DSS. Mesalazine or HQD treatment also suppressed the shortening of colon tissue length, the number of tumors, and the infiltration of inflammatory cells. The genes targeted by HQD were predicted and verified, followed by knockout experiments. Elevated SLC6A4 and inhibited serotonin production and inflammation were observed in HQD-treated mice. HQD inhibited the NFκB and NLRP3/caspase1/GSDMD pathways. The therapeutic effect of HQD was diminished in SLC6A4-deficient AOM/DSS mice. Additionally, the downregulation of SLC6A4 mitigated the inhibitory effect of HQD-containing serum on MODE-K cell pyroptosis. Our findings suggest that SLC6A4 is a pivotal regulator of HQD-alleviated CAC via its modulation of the NLRP3/caspase1/GSDMD pathway.


Subject(s)
Colitis , Scutellaria baicalensis , Mice , Animals , Mesalamine , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Colitis/chemically induced , Colitis/complications , Colitis/drug therapy , Carcinogenesis/metabolism , Mice, Inbred C57BL
19.
ACS Appl Mater Interfaces ; 16(11): 13697-13705, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38467397

ABSTRACT

In this work, we measure the oxygen kinetic properties of double perovskite PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF), a material widely used as the air electrode in solid oxide electrochemical cells, by mass relaxation (MR) and electrical conductivity relaxation (ECR) experiments. MR studies are carried out using thin films deposited on a gallium phosphate piezocrystal microbalance, and ECR studies are performed using a bulk bar sample with 97% theoretical density. Measurements are performed at 600 °C over the temperature oxygen partial pressure range from 10-4 to 0.21 atm. Despite the differences in experimental formats and surface microstructural features, the ks values extracted from the two methods are found to be in good agreement with one another. The rate constant is found to increase with oxygen partial pressure with a power law dependence, rising from 1.0 × 10-6 cm/s at 3.2 × 10-4 atm to 1.2 × 10-4 cm/s at 0.24 atm, as averaged over the oxidation and reduction directions. The rates in the oxidation direction are observed to be slightly higher than those in the reduction direction for a given pair of pO2 values, suggesting that the final pO2 value controls the overall relaxation behavior. The power law exponent describing the dependence of ks on pO2 is found to be 0.74 ± 0.01. The ECR study of the bulk sample reveals that even with a diffusion length of 1.8 mm, the relaxation process is largely free of diffusion limitations, indicating that PBSCF has the high bulk transport properties required for a double-phase boundary oxidation/reduction pathway.

20.
Clin Oral Implants Res ; 35(4): 427-442, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38314615

ABSTRACT

OBJECTIVE: This study aimed to synthesize zinc-incorporated nanowires structure modified titanium implant surface (Zn-NW-Ti) and explore its superior osteogenic and antibacterial properties in vitro and in vivo. MATERIALS AND METHODS: Zn-NW-Ti was synthesized via displacement reactions between zinc sulfate solutions and the titanium (Ti) surface, which was pretreated by hydrofluoric acid etching and hyperthermal alkalinization. The physicochemical properties of the Zn-NW-Ti surface were examined. Moreover, the biological effects of Zn-NW-Ti on MC3T3-E1 cells and its antibacterial property against oral pathogenic bacteria (Staphylococcus aureus, Porphyromonas gingivalis, and Actinobacillus actinomycetemcomitans) compared with sandblasted and acid-etched Ti (SLA-Ti) and nanowires modified Ti (NW-Ti) surface were assessed. Zn-NW-Ti and SLA-Ti modified implants were inserted into the anterior extraction socket of the rabbit mandible with or without exposure to the mixed bacterial solution (S. aureus, P. gingivalis, and A. actinomycetemcomitans) to investigate the osteointegration and antibacterial performance via radiographic and histomorphometric analysis. RESULTS: The Zn-NW-Ti surface was successfully prepared. The resultant titanium surface appeared as a nanowires structure with hydrophilicity, from which zinc ions were released in an effective concentration range. The Zn-NW-Ti surface performed better in facilitating the adhesion, proliferation, and differentiation of MC3T3-E1 cells while inhibiting the colonization of bacteria compared with SLA-Ti and NW-Ti surface. The Zn-NW-Ti implant exhibited enhanced osseointegration in vivo, which was attributed to increased osteogenic activity and reduced bacterial-induced inflammation compared with the SLA-Ti implant. CONCLUSIONS: The Zn-incorporated nanowires structure modified titanium implant surface exhibited improvements in osteogenic and antibacterial properties, which optimized osteointegration in comparison with SLA titanium implant surface.


Subject(s)
Dental Implants , Nanowires , Animals , Rabbits , Titanium/pharmacology , Titanium/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Osseointegration , Bacteria , Zinc/chemistry , Zinc/pharmacology , Surface Properties , Osteogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...