Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 437
Filter
1.
Nat Commun ; 15(1): 4904, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851828

ABSTRACT

Age-related depletion of stem cells causes tissue degeneration and failure to tissue regeneration, driving aging at the organismal level. Previously we reported a cell-non-autonomous DAF-16/FOXO activity in antagonizing the age-related loss of germline stem/progenitor cells (GSPCs) in C. elegans, indicating that regulation of stem cell aging occurs at the organ system level. Here we discover the molecular effector that links the cell-non-autonomous DAF-16/FOXO activity to GSPC maintenance over time by performing a tissue-specific DAF-16/FOXO transcriptome analysis. Our data show that dos-3, which encodes a non-canonical Notch ligand, is a direct transcriptional target of DAF-16/FOXO and mediates the effect of the cell-non-autonomous DAF-16/FOXO activity on GSPC maintenance through activating Notch signaling in the germ line. Importantly, expression of a human homologous protein can functionally substitute for DOS-3 in this scenario. As Notch signaling controls the specification of many tissue stem cells, similar mechanisms may exist in other aging stem cell systems.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Forkhead Transcription Factors , Germ Cells , Receptors, Notch , Signal Transduction , Stem Cells , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Germ Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Stem Cells/metabolism , Stem Cells/cytology , Aging/metabolism , Aging/genetics , Humans
2.
Diagn Pathol ; 19(1): 74, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849857

ABSTRACT

BACKGROUND: Polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes (POEMS) syndrome is a rare plasma cell (PC) neoplasm with associated paraneoplastic syndrome. According to the current diagnostic criteria, peripheral polyneuropathy and monoclonal PC proliferative disorder represent two mandatory criteria. CASE PRESENTATION: We report a 54-year-old male with peripheral neuropathy of bilateral lower limbs, sclerotic bone lesions, elevated vascular endothelial growth factor (VEGF) levels, splenomegaly, extravascular volume overload, endocrinopathy, and skin hemangiomas. Of note, serum and urine protein electrophoresis (PEP) and immunofixation electrophoresis (IFE) of this patient indicated undetectable M-protein and the normal ratio of free light chains κ and λ (FLC-R (κ/λ)). No monoclonal PCs were found in bone marrow examinations or biopsy of diseased bones. However, his clinical manifestations matched most of the diagnostic criteria. After excluding other diseases that are easily confused with POEMS syndrome, the diagnosis of variant POEMS syndrome with undetectable M-protein was proposed. The patient obtained clinically significant improvement and elevated VEGF returned to normal after 6 months of treatment with lenalidomide plus dexamethasone. CONCLUSIONS: Monoclonal PC dyscrasia (M-protein) while being a mandatory criterion for POEMS syndrome is undetectable in a considerable amount of patients that otherwise demonstrate typical symptoms. Here, we reported a case of variant POEMS syndrome with featured clinical manifestations, elevated VEGF levels, and good response to therapies targeting PCs but no evidence of M-protein. Therefore, negative results in M-protein and monoclonal PCs aren't enough to reject the diagnosis of POEMS syndrome. It is imperative to recognize the variant form of POEMS syndrome.


Subject(s)
POEMS Syndrome , Humans , POEMS Syndrome/diagnosis , POEMS Syndrome/pathology , Male , Middle Aged , Lenalidomide/therapeutic use , Thalidomide/therapeutic use , Thalidomide/analogs & derivatives , Vascular Endothelial Growth Factor A , Dexamethasone/therapeutic use , Treatment Outcome , Myeloma Proteins/analysis
3.
J Food Sci ; 89(6): 3494-3505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700357

ABSTRACT

The abilities of Chinese quince free proanthocyanidins (FP) and bound proanthocyanidins (BP) at different levels (0.1%, 0.15%, and 0.3%) to mitigate heterocyclic aromatic amine (HAA) formation in fried chicken patties were investigated for the first time and compared with vitamin C (Vc). FP and BP reduced HAAs in a dose-dependent manner. Significantly, high concentrations of FP (0.3%) resulted in a reduction of PhIP, harman, and norharman levels by 59.84%, 22.91%, and 38.21%, respectively, in chicken patties. The addition of proanthocyanidins significantly (p < 0.05) reduced the weight loss of fried chicken patties. Furthermore, a positive correlation was observed among pH, weight loss, and total HAA formation in all three groups (FP, BP, and Vc). Multivariate analysis showed that FP had a more pronounced effect than BP from the perspective of enhancing the quality of fried chicken patties and reducing the formation of HAAs. These results indicate that proanthocyanidins, both BP and FP, but especially FP, from Chinese quince can inhibit the formation of carcinogenic HAAs when added to protein-rich foods that are subsequently fried.


Subject(s)
Amines , Chickens , Cooking , Proanthocyanidins , Proanthocyanidins/analysis , Proanthocyanidins/pharmacology , Animals , Amines/chemistry , Cooking/methods , Heterocyclic Compounds/chemistry , Rosaceae/chemistry , East Asian People
4.
J Food Sci ; 89(6): 3759-3775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706376

ABSTRACT

Heterocyclic amines (HCAs) have potential carcinogenic and mutagenic activity and are generated in cooked protein-rich foods. Adding proanthocyanidins (PAs) to these foods before frying is an effective way to reduce HCAs. In this study, polymeric PAs (PPA) and ultrasound-assisted acid-catalyzed/catechin nucleophilic depolymerized PAs (UAPA, a type of oligomeric PA) were prepared from Chinese quince fruits (CQF). Different levels of PPA and UAPA (0.05%, 0.1%, and 0.15%) were added to chicken meatballs and tofu; then these foods were fried, and the content of HCAs in them after frying was investigated. The results showed that PPA and, particularly, UAPA significantly inhibited the formation of HCAs in fried meatballs and tofu, and this inhibition was dose-dependent. The inhibition of HCAs by both PPA and UAPA was stronger in the chicken meatballs than in fried tofu. The level of total HCAs was significantly reduced by 57.84% (from 11.93 to 5.03 ng/g) after treatment of meatballs with 0.15% UAPA, with inhibition rates of 78.94%, 50.37%, and 17.81% for norharman, harman, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), respectively. Of note, there was a negative correlation between water, lipid, protein, creatine, and glucose content and HCA content in the crust, interior, and whole (crust-plus-interior) measurements of all fried samples. Interestingly, PPA and UAPA were found more effective in inhibiting HCAs in the exterior crust than in the interior of the fried chicken meatballs. These results provide evidence that further studies on the reduction of the formation of harmful HCAs in fried foods by adding CQF PAs could be valuable to the fried food industry. PRACTICAL APPLICATION: Chinese quince proanthocyanidins treatments significantly inhibited the generation of heterocyclic amines (HCAs) in chicken meatballs and tofu when deep-fried. These results suggest that Chinese quince proanthocyanidins can be used as natural food additive for reducing HCAs in fried foods, laying the foundation for using Chinese quince fruit proanthocyanidins for HCA inhibition in the food industry.


Subject(s)
Amines , Chickens , Cooking , Proanthocyanidins , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Animals , Cooking/methods , Amines/chemistry , Fruit/chemistry , Meat Products/analysis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/analysis , Hot Temperature , East Asian People
5.
Phytopathology ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810265

ABSTRACT

Dioscorea opposita cv. 'Tiegun' is an economically important crop with high nutritional and medicinal value. Plants can activate complex and diverse defense mechanisms after infection by pathogenic fungi. Moreover, endophytic fungi can also trigger the plant immune system to resist pathogen invasion. However, the study of the effects of endophytic fungi on plant infection lags far behind that of pathogenic fungi, and the underlying mechanism is not fully understood. Here, the black spot pathogen Alternaria alternata and the endophytic fungus Penicillium halotolerans of 'Tiegun' were identified and used to infect calli. The results showed that A. alternata could cause more severe membrane lipid peroxidation, while P. halotolerans could rapidly increase the activity of the plant antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); thus, the degree of damage caused by P. halotolerans to the callus was weaker than that caused by A. alternata. RNA-seq analysis revealed that various plant defense pathways, such as phenylpropanoid biosynthesis, flavonoid biosynthesis, plant hormone signal transduction, and the MAPK signaling pathway, play important roles in triggering the plant immune response during fungal infection. Furthermore, the tryptophan metabolism, betalain biosynthesis, fatty acid degradation, flavonoid biosynthesis, tyrosine metabolism and isoquinoline alkaloid biosynthesis pathways may accelerate the infection of pathogenic fungi, and the ribosome biogenesis pathway in eukaryotes may retard the damage caused by endophytic fungi. This study lays a foundation for exploring the infection mechanism of yam pathogens and endophytic fungi and provides insight for effective fungal disease control in agriculture.

6.
ACS Omega ; 9(20): 22386-22397, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799314

ABSTRACT

Salidroside, a valuable phenylethanoid glycoside, is obtained from plants belonging to the Rhodiola genus, known for its diverse biological properties. At present, salidroside is still far from large-scale industrial production due to its lower titer and higher process cost. In this study, we have for the first time increased salidroside production by enhancing UDP-glucose supply in situ. We constructed an in vivo UDP-glucose regeneration system that works in conjunction with UDP-glucose transferase from Rhodiola innovatively to improve UDP-glucose availability. And a coculture was formed in order to enable de novo salidroside synthesis. Confronted with the influence of tyrosol on strain growth, an adaptive laboratory evolution strategy was implemented to enhance the strain's tolerance. Similarly, salidroside production was optimized through refinement of the fermentation medium, the inoculation ratio of the two microbes, and the inoculation size. The final salidroside titer reached 3.8 g/L. This was the highest titer achieved at the shake flask level in the existing reports. And this marked the first successful synthesis of salidroside in an in situ enhanced UDP-glucose system using sucrose. The cost was reduced by 93% due to the use of inexpensive substrates. This accomplishment laid a robust foundation for further investigations into the synthesis of other notable glycosides and natural compounds.

7.
Int J Biol Macromol ; 269(Pt 2): 132216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729483

ABSTRACT

Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.


Subject(s)
Charcoal , Lignin , Sesame Oil , Lignin/chemistry , Charcoal/chemistry , Adsorption , Sesame Oil/chemistry , Benzo(a)pyrene/chemistry , Kinetics
8.
Front Bioeng Biotechnol ; 12: 1392414, 2024.
Article in English | MEDLINE | ID: mdl-38605985

ABSTRACT

Succinic acid (SA), one of the 12 top platform chemicals produced from biomass, is a precursor of various high value-added derivatives. Specially, 1 mol CO2 is assimilated in 1 mol SA biosynthetic route under anaerobic conditions, which helps to achieve carbon reduction goals. In this review, methods for enhanced CO2 fixation in SA production and utilization of waste biomass for SA production are reviewed. Bioelectrochemical and bioreactor coupling systems constructed with off-gas reutilization to capture CO2 more efficiently were highlighted. In addition, the techno-economic analysis and carbon sequestration benefits for the synthesis of bio-based SA from CO2 and waste biomass are analyzed. Finally, a droplet microfluidics-based high-throughput screening technique applied to the future bioproduction of SA is proposed as a promising approach.

9.
Plant Dis ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549276

ABSTRACT

Yam is an important medicinal and edible dual-purpose plant with high economic value. However, nematode damage severely affects its yield and quality. One of the major effects of nematode infestations is the secondary infection of pathogenic bacteria or fungi through entry wounds made by the nematodes. Understanding the response of the symbiotic microbial community of yam plants to nematodes is crucial for controlling such a disease. In this study, we investigated the rhizosphere and endophytic microbiomes shift after nematode infection during the tuber expansion stage in the Dioscorea opposita Thunb. cv. Tiegun yam. Our results revealed that soil depth affected the abundance of nematodes, and the relative number of Meloidogyne incognita was higher in the diseased soil at a depth of 16-40 cm than those at a depth of 0-15 cm and 41-70 cm. The abundance of and interactions among soil microbiota members were significantly correlated with root-knot nematode (RKN) parasitism at various soil depths. However, the comparison of the microbial alpha diversity and composition between healthy and diseased rhizosphere soil showed no difference. Compared with healthy soils, the co-occurrence networks of M. incognita-infested soils included a higher ratio of positive correlations linked to plant health. In addition, we detected a higher abundance of certain taxonomic groups belonging to Chitinophagaceae and Xanthobacteraceae in the rhizosphere of RKN-infested plants. The nematodes, besides causing direct damage to plants, also possess the ability to act synergistically with other pathogens, especially Ramicandelaber and Fusarium, leading to the development of disease complexes. In contrast to soil samples, RKN parasitism specifically had a significant effect on the composition and assembly of the root endophytic microbiota. The RKN colonization impacted a wide variety of endophytic microbiomes, including Pseudomonas, Sphingomonas, Rhizobium, Neocosmospora, and Fusarium. This study revealed the relationship between RKN disease and changes in the rhizosphere and endophytic microbial community, which may provide novel insights that help improve biological management of yam RKNs.

10.
Int J Biol Macromol ; 264(Pt 2): 130718, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460651

ABSTRACT

Chinese quince fruits (Chaenomeles sinensis) contain substantial amounts of lignin; however, the exact structure of lignin remains to be investigated. In this study, milled wood lignins (Milled wood lignin (MWL)-1, MWL-2, MWL-3, MWL-4, MWL-5, and MWL-6) were extracted from fruits harvested once a month from May to October 2019 to investigate their structural evolution during fruit growth. The samples were characterized via High-performance anion exchange chromatography (HPAEC), Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), thermogravimetric (TGA), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and NMR (2D-heteronuclear single quantum coherence (HSQC) and 31P). The MWL samples in all fruit growth stages were GS-type lignin and lignin core undergoing minimal alterations during fruit development. The predominant linkage in the lignin structure was ß-O-4', followed by ß-ß' and ß-5'. Galactose and glucose were the main monosaccharides associated with MWL. In MWL-6, the lignin exhibited the highest homogeneity and thermal stability. As the fruit matured, a gradual increase in the ß-O-4' proportion and the ratio of S/G was observed. The results provide comprehensive characterization of the cell wall lignin of quince fruit as it matures. This study could inspire innovative applications of quince fruit lignin and provide the optimal harvest time for lignin utilization.


Subject(s)
Lignin , Rosaceae , Lignin/chemistry , Fruit/chemistry , Spectroscopy, Fourier Transform Infrared , Rosaceae/chemistry , Wood/chemistry , China
11.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Article in English | MEDLINE | ID: mdl-38552695

ABSTRACT

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Subject(s)
Benzo(a)pyrene , Charcoal , Lignin , Sesame Oil , Sesamum , Charcoal/chemistry , Lignin/chemistry , Benzo(a)pyrene/chemistry , Adsorption , Sesame Oil/chemistry , Sesamum/chemistry , Zinc Compounds/chemistry , Chlorides/chemistry
12.
Biomater Sci ; 12(7): 1662-1692, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38411151

ABSTRACT

Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.


Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/chemistry , Polyphenols
13.
Food Chem ; 444: 138642, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38325088

ABSTRACT

Chinese quince (Chaenomeles sinensis) fruit is an underutilized resource, rich in proanthocyanidins with antioxidant ability but poor lipid solubility. In this study, a novel modified oligomeric proanthocyanidin (MOPA) was prepared, which exhibited favorable lipid solubility (354.52 mg/100 g). It showed higher radical scavenging abilities than commercial antioxidant-BHA (butylated hydroxyanisole), both at 0.4-0.5 mg/mL. The addition of MOPA (0.04 %wt.) significantly increased the oxidative stability index of the soybean oil from 5.52 to 8.03 h, which was slightly lower than that of BHA (8.35 h). Analysis of the physicochemical properties and composition of oil during deep-frying showed that MOPA demonstrated significant antioxidant effects and effectively restricted the oil oxidation. This inhibition also delays the formation of heterocyclic amines (HAs) in fried food, thereby reducing the migration of HAs from food to deep-frying oil. Therefore, MOPA is a promising novel liposoluble antioxidant for protecting the quality of deep-frying oil.


Subject(s)
Phenylacetates , Proanthocyanidins , Rosaceae , Antioxidants/chemistry , Soybean Oil/chemistry , China
14.
J Chem Theory Comput ; 20(10): 4229-4238, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38400860

ABSTRACT

Carbon monoxide (CO) is a byproduct of the incomplete combustion of carbon-based fuels, such as wood, coal, gasoline, or natural gas. As incomplete combustion in a fire accident or in an engine, massively produced CO leads to a serious life threat because CO competes with oxygen (O2) binding to hemoglobin and makes people suffer from hypoxia. Although there is hyperbaric O2 therapy for patients with CO poisoning, the nanoscale mechanism of CO dissociation in the O2-rich environment is not completely understood. In this study, we construct the classical force field parameters compatible with the CHARMM for simulating the coordination interactions between hemoglobin, CO, and O2, and use the force field to reveal the impact of O2 on the binding strength between hemoglobin and CO. Density functional theory and Car-Parrinello molecular dynamics simulations are used to obtain the bond energy and equilibrium geometry, and we used machine learning enabled via a feedforward neural network model to obtain the classical force field parameters. We used steered molecular dynamics simulations with a force field to characterize the mechanical strength of the hemoglobin-CO bond before rupture under different simulated O2-rich environments. The results show that as O2 approaches the Fe2+ of heme at a distance smaller than ∼2.8 Å, the coordination bond between CO and Fe2+ is reduced to 50% bond strength in terms of the peak force observed in the rupture process. This weakening effect is also shown by the free energy landscape measured by our metadynamics simulation. Our work suggests that the O2-rich environment around the hemoglobin-CO bond effectively weakens the bonding, so that designing of O2 delivery vector to the site is helpful for alleviating CO binding, which may shed light on de novo drug design for CO poisoning.


Subject(s)
Carbon Monoxide , Hemoglobins , Molecular Dynamics Simulation , Oxygen , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Oxygen/chemistry , Oxygen/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Density Functional Theory , Humans , Protein Binding
15.
Eur J Med Chem ; 267: 116166, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38281455

ABSTRACT

Following nearly two decades of development, significant advancements have been achieved in PROTAC technology. As of the end of 2022, more than 20 drugs have entered clinical trials, with ARV-471 targeting estrogen receptor (ER) showing remarkable progress by entering phase III clinical studies. In 2022, significant progress has been made on multiple targets. The first reversible covalent degrader designed to target the KRASG12C mutant protein, based on cyclopropionamide, has been reported. Additionally, the activity HDCA1 degrader surpassed submicromolar levels during the same year. A novel FEM1B covalent ligand called EN106 was also discovered, expanding the range of available ligands. Furthermore, the first PROTAC drug targeting SOS1 was reported. Additionally, the first-in-class degraders that specifically target BRD4 isoforms (BRD4 L and BRD4 S) have recently been reported, providing a valuable tool for further investigating the biological functions of these isoforms. Lastly, a breakthrough was also achieved with the first degrader targeting both CDK9 and Cyclin T1. In this review, we aimed to update the PROTAC degraders as potential anticancer agents covering articles published in 2022. The design strategies, degradation effects, and anticancer activities were highlighted, which might provide an updated sight to develop novel PROTAC degraders with great potential as anticancer agents as well as favorable drug-like properties.


Subject(s)
Antineoplastic Agents , Nuclear Proteins , Transcription Factors , Antineoplastic Agents/pharmacology , Estrogen Antagonists , Protein Isoforms , Proteolysis
16.
Adv Mater ; 36(3): e2308159, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37831921

ABSTRACT

The sequential deposition process has demonstrated the great possibility to achieve a photolayer architecture with an ideal gradient phase separation morphology, which has a vital influence on the physical processes that determine the performance of organic solar cells (OSCs). However, the controllable preparation of pseudo-planar heterojunction (P-PHJ) with gradient distribution has not been effectively elucidated. Herein, a binary-dilution strategy is proposed, the PM6 solution with micro acceptor BO-4Cl and the L8-BO solution with micro donor PM6 respectively, to form P-PHJ film. This architecture exists good donor (D) and acceptor (A) vertical gradient distribution and larger D/A interpenetrating regions, which promotes exciton generation and dissociation, shortens charge transport distance and optimizes carrier dynamics. Moreover, the dilution of PM6 by BO-4Cl promotes the regulation of active layer aggregation size and phase purity, thus alleviating energy disorder and voltage loss. As a result, the P-PHJ device exhibits an outstanding power conversion efficiency of 19.32% with an excellent short-circuit current density of 26.92 mA cm-2 , much higher than planar binary heterojunction (17.67%) and ternary bulk heterojunction (18.49%) devices. This research proves a simple but effective method to provide an avenue for constructing desirable active layer morphology and high-performance OSCs.

17.
Nat Commun ; 14(1): 7571, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989738

ABSTRACT

Cis-peptide bonds are rare in proteins, and building blocks less favorable to the trans-conformer have been considered destabilizing. Although proline tolerates the cis-conformer modestly among all amino acids, for collagen, the most prevalent proline-abundant protein, all peptide bonds must be trans to form its hallmark triple-helix structure. Here, using host-guest collagen mimetic peptides (CMPs), we discover that surprisingly, even the cis-enforcing peptoid residues (N-substituted glycines) form stable triple-helices. Our interrogations establish that these peptoid residues entropically stabilize the triple-helix by pre-organizing individual peptides into a polyproline-II helix. Moreover, noting that the cis-demanding peptoid residues drastically reduce the folding rate, we design a CMP whose triple-helix formation can be controlled by peptoid cis-trans isomerization, enabling direct targeting of fibrotic remodeling in myocardial infarction in vivo. These findings elucidate the principles of peptoid cis-trans isomerization in protein folding and showcase the exploitation of cis-amide-favoring residues in building programmable and functional peptidomimetics.


Subject(s)
Peptoids , Peptoids/chemistry , Isomerism , Peptides/chemistry , Collagen/chemistry , Proline/metabolism
18.
World J Clin Cases ; 11(23): 5430-5439, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37637679

ABSTRACT

BACKGROUND: Intracranial hemorrhage after spinal surgery is a rare and devastating complication. AIM: To investigate the economic burden, clinical characteristics, risk factors, and mechanisms of intracranial hemorrhage after spinal surgery. METHODS: A retrospective cohort study was conducted from January 1, 2015, to December 31, 2022. Patients aged ≥ 18 years, who had undergone spinal surgery were included. Intracranial hemorrhage patients were selected after spinal surgery during hospitalization. Based on the type of spinal surgery, patients with intracranial hemorrhage were randomly matched in a 1:5 ratio with control patients without intracranial hemorrhage. The patients' pre-, intra-, and post-operative data and clinical manifestations were recorded. RESULTS: A total of 24472 patients underwent spinal surgery. Six patients (3 males and 3 females, average age 71.3 years) developed intracranial hemorrhage after posterior spinal fusion procedures, with an incidence of 0.025% (6/24472). The prevailing type of intracranial hemorrhage was cerebellar hemorrhage. Two patients had a poor clinical outcome. Based on the type of surgery, 30 control patients were randomly matched in 1:5 ratio. The intracranial hemorrhage group showed significant differences compared with the control group with regard to age (71.33 ± 7.45 years vs 58.39 ± 8.07 years, P = 0.001), previous history of cerebrovascular disease (50% vs 6.7%, P = 0.024), spinal dura mater injury (50% vs 3.3%, P = 0.010), hospital expenses (RMB 242119.1 ± 87610.0 vs RMB 96290.7 ± 32029.9, P = 0.009), and discharge activity daily living score (40.00 ± 25.88 vs 75.40 ± 18.29, P = 0.019). CONCLUSION: The incidence of intracranial hemorrhage after spinal surgery was extremely low, with poor clinical outcomes. Patient age, previous stroke history, and dura mater damage were possible risk factors. It is suggested that spinal dura mater injury should be avoided during surgery in high-risk patients.

19.
Lab Chip ; 23(18): 4044-4051, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37606082

ABSTRACT

Mycelium-based materials have seen a surge in popularity in the manufacturing industry in recent years. This study aims to build a lab-scale experimental facility to investigate mycelium growth under a well-controlled temperature and humidity environment and explore how substrates of very different chemical and mechanical properties can affect the microscopic morphology of the mycelium fibers during growth. Here, we design and build a customized green tent with good thermal and humidity insulation for controlling the temperature and humidity and monitor the environmental data with an Arduino chip. We develop our procedure to grow mycelium from spores to fibrous networks. It is shown that a hydrogel substrate with soluble nutrition is more favorite for mycelium growth than a hardwood board and leads to higher growing speed. We take many microscopic images of the mycelium fibers on the hardwood board and the hydrogel substrate and found no significant difference in diameter (∼3 µm). This research provides a foundation to explore the mechanism of mycelium growth and explore the environmentally friendly and time-efficient method of its growth.


Subject(s)
Hydrogels , Mycelium , Humidity , Nutritional Status , Temperature
20.
Int J Biol Macromol ; 246: 125664, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37406919

ABSTRACT

Chinese quince fruit (CQF) contains abundant pectin; however, the pectin cannot be efficiently separated by conventional approaches because of strong lignin-carbohydrate complexes (LCC). In this study, to elucidate the structural characteristics of the original LCC formed by lignin and pectin in CQF, single and multiple enzymatic hydrolysis pretreatments were innovatively performed, and the resulting LCC preparations were comprehensively characterized using a series of techniques. The enzymatic hydrolysis pretreatments significantly increase the LCC yield, releasing LCC fractions with low molecular weights (Mw = 4660-8288 Da). LCC-4, isolated by pretreatment with cellulase plus xylanase, had the highest galacturonic acid content (15.5 %), followed by LCC-2 (isolated by xylanase pretreatment) of 14.0 %. In CQF, lignin develops lignin-carbohydrate (LC) bonds with pectin to form LCC, with phenyl-glycoside bond being the dominant linkage. Although the pectinase pretreatment reduced the pectin content, signals of the LC linkages in the 2D-HSQC spectra were enhanced. LCC-4 could be considered as the most representative of the original LCC in CQF due to its high pectin content and multiple LCC signals in the 2D-HSQC spectrum. The structural understanding of the original LCC in CQF will lay a foundation for designing appropriate methods for extracting pectin from CQF.


Subject(s)
Lignin , Rosaceae , Carbohydrates/chemistry , Fruit , Hydrolysis , Lignin/chemistry , Rosaceae/chemistry , China
SELECTION OF CITATIONS
SEARCH DETAIL
...