Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Loss Prev Process Ind ; 68: 104257, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32834552

ABSTRACT

The Process Safety Management (PSM) systems at the operating facilities in the Oil & Gas and in Chemical manufacturing industries have matured over the years and have become, at most facilities, very robust and sophisticated. These programs are administrated by Process Safety (PS) teams at both the corporate business units and plant levels and have been effective in reducing the number and severity of PS events across the industries over the past 25 years or so. Incidents however are occurring at a regular interval and in recent times several noteworthy PS events have occurred in the United States which have brought into question the effectiveness of the PSM programs at play. These facilities have been applying their PSM programs with the expectation that the number and severity of PS events would decrease over time. The expected result has not been realized, especially in context to those facilities that have undergone the recent incidents. Current paper reviews a few publicly available PS performance reports of Oil & Gas and Chemical manufacturing industries. The authors identified a few factors at play that have led to these PS events based on their experience, literature review, and incident investigation reports. Most of the factors are intertwined with multiple PSM elements and it requires a holistic approach to address them. Each of the factors is described and the path forward is proposed to improve the effectiveness of PSM programs.

2.
J Colloid Interface Sci ; 317(2): 620-30, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17949729

ABSTRACT

A finite element particle transport model, consisting of Navier-Stokes and continuity equations defined in arbitrary Lagrangian-Eulerian (ALE) kinematics, is employed to describe the motion of a rigid uncharged spherical particle in a cylindrical channel of uniform cross-section. The wall correction factors for the spherical particle moving with a fluid confined in an infinitely long cylindrical channel, as well as in finite length channels are presented. Two finite channel effects are considered, namely, motion of the particle at the entrance and exit of an open channel, and the motion of a particle toward the capped end of the channel. The numerical model demonstrates good agreement with many existing analytical results for infinite channels in the Stokes flow regime. Simple correlations for the hindrance factors are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...