Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(4): 046401, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335370

ABSTRACT

CeRh_{2}As_{2} is a new multiphase superconductor with strong suggestions for an additional itinerant multipolar ordered phase. The modeling of the low-temperature properties of this heavy-fermion compound requires a quartet Ce^{3+} crystal-field ground state. Here, we provide the evidence for the formation of such a quartet state using x-ray spectroscopy. Core-level photoelectron and x-ray absorption spectroscopy confirm the presence of Kondo hybridization in CeRh_{2}As_{2}. The temperature dependence of the linear dichroism unambiguously reveals the impact of Kondo physics for coupling the Kramer's doublets into an effective quasiquartet. Nonresonant inelastic x-ray scattering data find that the |Γ_{7}^{-}⟩ state with its lobes along the 110 direction of the tetragonal structure (xy orientation) contributes most to the multiorbital ground state of CeRh_{2}As_{2}.

2.
Sci Rep ; 13(1): 1597, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36709384

ABSTRACT

The intermetallic compound Eu[Formula: see text]In[Formula: see text]Sb[Formula: see text], an antiferromagnetic material with nonsymmorphic crystalline structure, is investigated by magnetic, electronic transport and specific heat measurements. Being a Zintl phase, insulating behavior is expected. Our thermodynamic and magnetotransport measurements along different crystallographic directions strongly indicate polaron formation well above the magnetic ordering temperatures. Pronounced anisotropies of the magnetic and transport properties even above the magnetic ordering temperature are observed despite the Eu[Formula: see text] configuration which testify to complex and competing magnetic interactions between these ions and give rise to intricate phase diagrams discussed in detail. Our results provide a comprehensive framework for further detailed study of this multifaceted compound with possible nontrivial topology.

3.
Proc Natl Acad Sci U S A ; 116(34): 16697-16702, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31391310

ABSTRACT

A detailed experimental investigation of Fe1+y Te (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field-induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.

4.
Sci Adv ; 4(11): eaau4886, 2018 11.
Article in English | MEDLINE | ID: mdl-30430137

ABSTRACT

The impact of nonmagnetic and magnetic impurities on topological insulators is a central focus concerning their fundamental physics and possible spintronics and quantum computing applications. Combining scanning tunneling spectroscopy with transport measurements, we investigate, both locally and globally, the effect of nonmagnetic and magnetic substituents in SmB6, a predicted topological Kondo insulator. Around the so-introduced substitutents and in accord with theoretical predictions, the surface states are locally suppressed with different length scales depending on the substituent's magnetic properties. For sufficiently high substituent concentrations, these states are globally destroyed. Similarly, using a magnetic tip in tunneling spectroscopy also resulted in largely suppressed surface states. Hence, a destruction of the surface states is always observed close to atoms with substantial magnetic moment. This points to the topological nature of the surface states in SmB6 and illustrates how magnetic impurities destroy the surface states from microscopic to macroscopic length scales.


Subject(s)
Boron Compounds/chemistry , Magnetics , Microscopy, Scanning Tunneling/methods , Samarium/chemistry , Surface Properties
5.
Phys Rev Lett ; 120(25): 257201, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29979066

ABSTRACT

We combined scanning tunneling microscopy and locally resolved magnetic stray field measurements on the ferromagnetic semimetal EuB_{6}, which exhibits a complex ferromagnetic order and a colossal magnetoresistance effect. In a zero magnetic field, scanning tunneling spectroscopy visualizes the existence of local inhomogeneities in the electronic density of states, which we interpret as the localization of charge carriers due to the formation of magnetic polarons. Micro-Hall magnetometry measurements of the total stray field emanating from the end of a rectangular-shaped platelike sample reveals evidence for magnetic clusters also in finite magnetic fields. In contrast, the signal detected below the faces of the magnetized sample measures a local stray field indicating the formation of pronounced magnetic inhomogeneities consistent with large clusters of percolated magnetic polarons.

6.
Sci Rep ; 7: 44024, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266654

ABSTRACT

The microscopic mechanism governing the zero-resistance flow of current in some iron-based, high-temperature superconducting materials is not well understood up to now. A central issue concerning the investigation of these materials is their superconducting gap symmetry and structure. Here we present a combined study of low-temperature specific heat and scanning tunnelling microscopy measurements on single crystalline FeSe. The results reveal the existence of at least two superconducting gaps which can be represented by a phenomenological two-band model. The analysis of the specific heat suggests significant anisotropy in the gap magnitude with deep gap minima. The tunneling spectra display an overall "U"-shaped gap close to the Fermi level away as well as on top of twin boundaries. These results are compatible with the anisotropic nodeless models describing superconductivity in FeSe.

7.
Proc Natl Acad Sci U S A ; 111(13): 4798-802, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24639519

ABSTRACT

Hybridization between conduction electrons and the strongly interacting f-electrons in rare earth or actinide compounds may result in new states of matter. Depending on the exact location of the concomitant hybridization gap with respect to the Fermi energy, a heavy fermion or an insulating ground state ensues. To study this entanglement locally, we conducted scanning tunneling microscopy and spectroscopy (STS) measurements on the "Kondo insulator" SmB6. The vast majority of surface areas investigated were reconstructed, but infrequently, patches of varying sizes of nonreconstructed Sm- or B-terminated surfaces also were found. On the smallest patches, clear indications for the hybridization gap with logarithmic temperature dependence (as expected for a Kondo system) and for intermultiplet transitions were observed. On nonreconstructed surface areas large enough for coherent cotunneling, we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure, not proving but leaving open the possibility of the existence of a topologically protected surface state.

SELECTION OF CITATIONS
SEARCH DETAIL
...