Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Transl Immunology ; 13(2): e1488, 2024.
Article in English | MEDLINE | ID: mdl-38322491

ABSTRACT

Objectives: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus infection in pregnancy is associated with higher incidence of placental dysfunction, referred to by a few studies as a 'preeclampsia-like syndrome'. However, the mechanisms underpinning SARS-CoV-2-induced placental malfunction are still unclear. Here, we investigated whether the transcriptional architecture of the placenta is altered in response to SARS-CoV-2 infection. Methods: We utilised whole-transcriptome, digital spatial profiling, to examine gene expression patterns in placental tissues from participants who contracted SARS-CoV-2 in the third trimester of their pregnancy (n = 7) and those collected prior to the start of the coronavirus disease 2019 (COVID-19) pandemic (n = 9). Results: Through comprehensive spatial transcriptomic analyses of the trophoblast and villous core stromal cell subpopulations in the placenta, we identified SARS-CoV-2 to promote signatures associated with hypoxia and placental dysfunction. Notably, genes associated with vasodilation (NOS3), oxidative stress (GDF15, CRH) and preeclampsia (FLT1, EGFR, KISS1, PAPPA2) were enriched with SARS-CoV-2. Pathways related to increased nutrient uptake, vascular tension, hypertension and inflammation were also enriched in SARS-CoV-2 samples compared to uninfected controls. Conclusions: Our findings demonstrate the utility of spatially resolved transcriptomic analysis in defining the underlying pathogenic mechanisms of SARS-CoV-2 in pregnancy, particularly its role in placental dysfunction. Furthermore, this study highlights the significance of digital spatial profiling in mapping the intricate crosstalk between trophoblasts and villous core stromal cells, thus shedding light on pathways associated with placental dysfunction in pregnancies with SARS-CoV-2 infection.

2.
Res Sq ; 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37034758

ABSTRACT

Genetic variation at the 19q13.3 KLK locus is linked with prostate cancer susceptibility. The non-synonymous KLK3 SNP, rs17632542 (c.536T>C; Ile163Thr-substitution in PSA) is associated with reduced prostate cancer risk, however, the functional relevance is unknown. Here, we identify that the SNP variant-induced change in PSA biochemical activity as a previously undescribed function mediating prostate cancer pathogenesis. The 'Thr' PSA variant led to small subcutaneous tumours, supporting reduced prostate cancer risk. However, 'Thr' PSA also displayed higher metastatic potential with pronounced osteolytic activity in an experimental metastasis in-vivo model. Biochemical characterization of this PSA variant demonstrated markedly reduced proteolytic activity that correlated with differences in in-vivo tumour burden. The SNP is associated with increased risk for aggressive disease and prostate cancer-specific mortality in three independent cohorts, highlighting its critical function in mediating metastasis. Carriers of this SNP allele had reduced serum total PSA and a higher free/total PSA ratio that could contribute to late biopsy decisions and delay in diagnosis. Our results provide a molecular explanation for the prominent 19q13.3 KLK locus, rs17632542 SNP, association with a spectrum of prostate cancer clinical outcomes.

4.
Front Immunol ; 12: 743022, 2021.
Article in English | MEDLINE | ID: mdl-34603330

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. The virus primarily affects the lungs where it induces respiratory distress syndrome ranging from mild to acute, however, there is a growing body of evidence supporting its negative effects on other system organs that also carry the ACE2 receptor, such as the placenta. The majority of newborns delivered from SARS-CoV-2 positive mothers test negative following delivery, suggesting that there are protective mechanisms within the placenta. There appears to be a higher incidence of pregnancy-related complications in SARS-CoV-2 positive mothers, such as miscarriage, restricted fetal growth, or still-birth. In this review, we discuss the pathobiology of COVID-19 maternal infection and the potential adverse effects associated with viral infection, and the possibility of transplacental transmission.


Subject(s)
COVID-19/pathology , Placenta/pathology , Placenta/virology , Pregnancy Complications, Infectious/virology , Abortion, Spontaneous/virology , Angiotensin-Converting Enzyme 2/metabolism , Female , Fetal Growth Retardation/virology , Humans , Maternal-Fetal Exchange/physiology , Pregnancy , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Stillbirth
5.
Sci Adv ; 7(27)2021 06.
Article in English | MEDLINE | ID: mdl-34193425

ABSTRACT

While androgen-targeted therapies are routinely used in advanced prostate cancer (PCa), their effect is poorly understood in treating bone metastatic lesions and ultimately results in the development of metastatic castrate resistant prostate cancer (mCRPC). Here, we used an all-human microtissue-engineered model of mineralized metastatic tissue combining human osteoprogenitor cells, 3D printing and prostate cancer cells, to assess the effects of the antiandrogens, bicalutamide, and enzalutamide in this microenvironment. We demonstrate that cancer/bone stroma interactions and antiandrogens drive cancer progression in a mineralized microenvironment. Probing the bone microenvironment with enzalutamide led to stronger cancer cell adaptive responses and osteomimicry than bicalutamide. Enzalutamide presented with better treatment response, in line with enzalutamide delaying time to bone-related events and enzalutamide extending survival in mCRPC. The all-human microtissue-engineered model of mineralized metastatic tissue presented here represents a substantial advance to dissect the role of the bone tumor microenvironment and responses to therapies for mCPRC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Humans , Male , Prostatic Neoplasms, Castration-Resistant/pathology , Tumor Microenvironment
6.
Methods Mol Biol ; 2054: 59-77, 2019.
Article in English | MEDLINE | ID: mdl-31482447

ABSTRACT

The study of dynamic processes in the bone metastatic compartment has been challenged by the restrictive access and limited live imaging capabilities that in vivo bone models provide. In this protocol, we show the use of a human bone metastatic bioengineered microtissue for the quantitative investigation of cancer cells in an in vitro bone-like microenvironment. Using live cell epifluorescence microscopy, traditional- and spinning disc-confocal laser scanning microscopy, we demonstrate how to obtain multidimensional real-time data of fluorescently labeled cancer cells in the metastatic microenvironment. Using 4D imaging data processing software such as ImageJ and Imaris, we show how to transform qualitative images and videos into quantitative data of cancer cell attachment, morphology, proliferation, and migration in vitro in the human bone metastatic microtissue.


Subject(s)
Bone Neoplasms/secondary , Image Processing, Computer-Assisted/methods , Intravital Microscopy/methods , Prostatic Neoplasms/pathology , Tissue Engineering/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bone Neoplasms/drug therapy , Bone and Bones/drug effects , Bone and Bones/pathology , Cell Adhesion/drug effects , Cell Culture Techniques/methods , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor/methods , Humans , Luminescent Proteins/chemistry , Male , Microscopy, Confocal/methods , Osteoblasts , Software , Spatio-Temporal Analysis , Tumor Microenvironment/drug effects , Red Fluorescent Protein
7.
Traffic ; 20(9): 661-673, 2019 09.
Article in English | MEDLINE | ID: mdl-31297933

ABSTRACT

Macrophage migration into injured or infected tissue is a key aspect in the pathophysiology of many diseases where inflammation is a driving factor. Membrane-type-1 matrix metalloproteinase (MT1-MMP) cleaves extracellular matrix components to facilitate invasion. Here we show that, unlike the constitutive MT1-MMP surface recycling seen in cancer cells, unactivated macrophages express low levels of MT1-MMP. Upon lipopolysaccharide (LPS) activation, MT1-MMP synthesis dramatically increases 10-fold at the surface by 15 hours. MT1-MMP is trafficked from the Golgi complex to the surface via late endosomes/lysosomes in a pathway regulated by the late endosome/lysosome R-SNAREs VAMP7 and VAMP8. These form two separate complexes with the surface Q-SNARE complex Stx4/SNAP23 to regulate MT1-MMP delivery to the plasma membrane. Loss of either one of these SNAREs leads to a reduction in surface MT1-MMP, gelatinase activity and reduced invasion. Thus, inhibiting MT1-MMP transport through this pathway could reduce macrophage migration and the resulting inflammation.


Subject(s)
Cell Membrane/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Macrophage Activation , Matrix Metalloproteinase 14/metabolism , Animals , Cell Movement , Golgi Apparatus/metabolism , Mice , Protein Transport , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , R-SNARE Proteins/metabolism , RAW 264.7 Cells
8.
Bone Res ; 7: 13, 2019.
Article in English | MEDLINE | ID: mdl-31044095

ABSTRACT

While stromal interactions are essential in cancer adaptation to hormonal therapies, the effects of bone stroma and androgen deprivation on cancer progression in bone are poorly understood. Here, we tissue-engineered and validated an in vitro microtissue model of osteoblastic bone metastases, and used it to study the effects of androgen deprivation in this microenvironment. The model was established by culturing primary human osteoprogenitor cells on melt electrowritten polymer scaffolds, leading to a mineralized osteoblast-derived microtissue containing, in a 3D setting, viable osteoblastic cells, osteocytic cells, and appropriate expression of osteoblast/osteocyte-derived mRNA and proteins, and mineral content. Direct co-culture of androgen receptor-dependent/independent cell lines (LNCaP, C4-2B, and PC3) led cancer cells to display functional and molecular features as observed in vivo. Co-cultured cancer cells showed increased affinity to the microtissues, as a function of their bone metastatic potential. Co-cultures led to alkaline phosphatase and collagen-I upregulation and sclerostin downregulation, consistent with the clinical marker profile of osteoblastic bone metastases. LNCaP showed a significant adaptive response under androgen deprivation in the microtissues, with the notable appearance of neuroendocrine transdifferentiation features and increased expression of related markers (dopa decarboxylase, enolase 2). Androgen deprivation affected the biology of the metastatic microenvironment with stronger upregulation of androgen receptor, alkaline phosphatase, and dopa decarboxylase, as seen in the transition towards resistance. The unique microtissues engineered here represent a substantial asset to determine the involvement of the human bone microenvironment in prostate cancer progression and response to a therapeutic context in this microenvironment.

SELECTION OF CITATIONS
SEARCH DETAIL