Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(4): 1865-1876, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38217500

ABSTRACT

Marine organisms are threatened by the presence of pesticides in coastal waters. Among them, the Pacific oyster is one of the most studied invertebrates in marine ecotoxicology where numerous studies highlighted the multiscale impacts of pesticides. In the past few years, a growing body of literature has reported the epigenetic outcomes of xenobiotics. Because DNA methylation is an epigenetic mark implicated in organism development and is meiotically heritable, it raises the question of the multigenerational implications of xenobiotic-induced epigenetic alterations. Therefore, we performed a multigenerational exposure to an environmentally relevant mixture of 18 pesticides (nominal sum concentration: 2.85 µg·L-1) during embryo-larval stages (0-48 hpf) of a second generation (F1) for which parents where already exposed or not in F0. Gene expression, DNA methylation, and physiological end points were assessed throughout the life cycle of individuals. Overall, the multigenerational effect has a greater influence on the phenotype than the exposure itself. Thus, multigenerational phenotypic effects were observed: individuals descending from exposed parents exhibited lower epinephrine-induced metamorphosis and field survival rates. At the molecular level, RNA-seq and Methyl-seq data analyses performed in gastrula embryos and metamorphosis-competent pediveliger (MCP) larvae revealed a clear F0 treatment-dependent discrimination. Some genes implicated into shell secretion and immunity exhibited F1:F0 treatment interaction patterns (e.g., Calm and Myd88). Those results suggest that low chronic environmental pesticide contamination can alter organisms beyond the individual scale level and have long-term adaptive implications.


Subject(s)
Crassostrea , Pesticides , Water Pollutants, Chemical , Humans , Animals , Pesticides/toxicity , Crassostrea/genetics , Crassostrea/metabolism , DNA Methylation , Phenotype , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
2.
Environ Pollut ; 326: 121472, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36965683

ABSTRACT

Early life stages are crucial for organism development, especially for those displaying external fertilization, whose gametes and early stages face environmental stressors such as xenobiotics. The pacific oyster, Crassostrea gigas, is considered a model species in ecotoxicology because of its ecological characteristics (benthic, sessile, filter feeding). So far studies have investigated the impact of xenobiotics at embryotoxic, genotoxic and physiological endpoints, sometimes at the multigenerational scale, highlighting the role of epigenetic mechanisms in transmitting alterations induced by exposure to single xenobiotics. However, to date, little is known about the impact of environmentally-mimicking contaminants cocktails. Thus, we examined the impact of an early exposure to environmentally relevant mixture on the Pacific oyster life history. We studied transcriptomic, epigenetic and physiological alterations induced in oysters exposed to 18 pesticides and metals at environmental concentration (nominal sum concentration: 2.85 µg.L-1, measured sum concentration: 3.74 ± 0.013 µg.L-1) during embryo-larval stage (0-48 h post fertilization, hpf). No significant differences in embryo-larval abnormalities at 24 hpf were observed during larval and spat rearing; the swimming behaviour of exposed individuals was disturbed, while they were longer and heavier at specific time points, and exhibited a lower epinephrine-induced metamorphosis rate as well as a higher survival rate in the field. In addition, RNA-seq analyses of gastrula embryos revealed the differential expression of development-related genes (e.g. Hox orthologues and cell cycle regulators) between control and exposed oysters. Whole-genome DNA methylation analyses demonstrated a significant modification of DNA methylation in exposed larvae marked by a demethylation trend. Those findings suggest that early exposure to an environmentally relevant pesticide mixture induces multi-scale latent effects possibly affecting life history traits in the Pacific oyster.


Subject(s)
Crassostrea , Pesticides , Water Pollutants, Chemical , Animals , Humans , Crassostrea/physiology , DNA Methylation , Epigenesis, Genetic , Germ Cells , Pesticides/metabolism , Pesticides/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...