Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893608

ABSTRACT

Deep learning (DL) models for medical image classification frequently struggle to generalize to data from outside institutions. Additional clinical data are also rarely collected to comprehensively assess and understand model performance amongst subgroups. Following the development of a single-center model to identify the lung sliding artifact on lung ultrasound (LUS), we pursued a validation strategy using external LUS data. As annotated LUS data are relatively scarce-compared to other medical imaging data-we adopted a novel technique to optimize the use of limited external data to improve model generalizability. Externally acquired LUS data from three tertiary care centers, totaling 641 clips from 238 patients, were used to assess the baseline generalizability of our lung sliding model. We then employed our novel Threshold-Aware Accumulative Fine-Tuning (TAAFT) method to fine-tune the baseline model and determine the minimum amount of data required to achieve predefined performance goals. A subgroup analysis was also performed and Grad-CAM++ explanations were examined. The final model was fine-tuned on one-third of the external dataset to achieve 0.917 sensitivity, 0.817 specificity, and 0.920 area under the receiver operator characteristic curve (AUC) on the external validation dataset, exceeding our predefined performance goals. Subgroup analyses identified LUS characteristics that most greatly challenged the model's performance. Grad-CAM++ saliency maps highlighted clinically relevant regions on M-mode images. We report a multicenter study that exploits limited available external data to improve the generalizability and performance of our lung sliding model while identifying poorly performing subgroups to inform future iterative improvements. This approach may contribute to efficiencies for DL researchers working with smaller quantities of external validation data.

2.
Crit Care Med ; 51(2): 301-309, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36661454

ABSTRACT

OBJECTIVES: To evaluate the accuracy of a bedside, real-time deployment of a deep learning (DL) model capable of distinguishing between normal (A line pattern) and abnormal (B line pattern) lung parenchyma on lung ultrasound (LUS) in critically ill patients. DESIGN: Prospective, observational study evaluating the performance of a previously trained LUS DL model. Enrolled patients received a LUS examination with simultaneous DL model predictions using a portable device. Clip-level model predictions were analyzed and compared with blinded expert review for A versus B line pattern. Four prediction thresholding approaches were applied to maximize model sensitivity and specificity at bedside. SETTING: Academic ICU. PATIENTS: One-hundred critically ill patients admitted to ICU, receiving oxygen therapy, and eligible for respiratory imaging were included. Patients who were unstable or could not undergo an LUS examination were excluded. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 100 unique ICU patients (400 clips) were enrolled from two tertiary-care sites. Fifty-six patients were mechanically ventilated. When compared with gold standard expert annotation, the real-time inference yielded an accuracy of 95%, sensitivity of 93%, and specificity of 96% for identification of the B line pattern. Varying prediction thresholds showed that real-time modification of sensitivity and specificity according to clinical priorities is possible. CONCLUSIONS: A previously validated DL classification model performs equally well in real-time at the bedside when platformed on a portable device. As the first study to test the feasibility and performance of a DL classification model for LUS in a dedicated ICU environment, our results justify further inquiry into the impact of employing real-time automation of medical imaging into the care of the critically ill.


Subject(s)
Critical Illness , Deep Learning , Humans , Prospective Studies , Critical Illness/therapy , Lung/diagnostic imaging , Ultrasonography/methods , Intensive Care Units
3.
Comput Biol Med ; 148: 105953, 2022 09.
Article in English | MEDLINE | ID: mdl-35985186

ABSTRACT

Pneumothorax is a potentially life-threatening condition that can be rapidly and accurately assessed via the lung sliding artefact generated using lung ultrasound (LUS). Access to LUS is challenged by user dependence and shortage of training. Image classification using deep learning methods can automate interpretation in LUS and has not been thoroughly studied for lung sliding. Using a labelled LUS dataset from 2 academic hospitals, clinical B-mode (also known as brightness or two-dimensional mode) videos featuring both presence and absence of lung sliding were transformed into motion (M) mode images. These images were subsequently used to train a deep neural network binary classifier that was evaluated using a holdout set comprising 15% of the total data. Grad-CAM explanations were examined. Our binary classifier using the EfficientNetB0 architecture was trained using 2535 LUS clips from 614 patients. When evaluated on a test set of data uninvolved in training (540 clips from 124 patients), the model performed with a sensitivity of 93.5%, specificity of 87.3% and an area under the receiver operating characteristic curve (AUC) of 0.973. Grad-CAM explanations confirmed the model's focus on relevant regions on M-mode images. Our solution accurately distinguishes between the presence and absence of lung sliding artefacts on LUS.


Subject(s)
Deep Learning , Pneumothorax , Artifacts , Humans , Lung , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...