Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 111: 328-333, 2023 07.
Article in English | MEDLINE | ID: mdl-37164311

ABSTRACT

Immune dysregulation, including aberrant peripheral cytokine/chemokine levels, is implicated in neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD). While the diagnosis of ASD is more common in males compared to females, sex effects in immune dysregulation related to neurodevelopment remain understudied. The aim of this exploratory study was to determine whether there are sex-specific effects in neonatal immune dysregulation with respect to an ASD or delayed development (DD) diagnosis. We utilized the data from the Early Markers for Autism study, a population based case-control study of prenatal and neonatal biomarkers of ASD. The immune profile of newborns later diagnosed with ASD (n = 482, 91 females), DD (n = 140, 61 females) and sex-matched general population controls (GP; n = 378, 67 females) were analyzed using neonatal bloodspots (NBS) via 42-plex multiplex assay. Multiple linear regression analysis was performed to identify whether sex was associated with differences in cytokine/chemokine levels of children with ASD, DD, and GP. A sex by diagnosis interaction effect was observed only for the chemokine macrophage migration inhibitory factor (MIF), with males displaying higher levels of NBS MIF than females in the GP control group (p = 0.02), but not in ASD (p = 0.52) or DD (p = 0.29) groups. We found that regardless of child diagnosis, newborn bloodspot eluates from females had a significantly higher concentration than males with the same diagnosis of the chemokines granulocyte chemotactic protein 2 (GCP-2; p < 0.0001), macrophage inflammatory protein 2-alpha (GROß; p = 0.002), interferon-inducible t-cell alpha chemoattractant (I-TAC; p < 0.0001), stromal cell-derived factor 1 alpha and beta (SDF-1α-ß; p = 0.03), innate inflammatory chemokines interferon-gamma induced protein 10 (IP-10; p = 0.02), macrophage inflammatory protein 1-alpha (MIP-1α; p = 0.02), and Th1-related pro-inflammatory cytokine interleukin-12 active heterodimer (IL-12p70; p = 0.002). In contrast, males had a higher concentration than females of secondary lymphoid-tissue chemokine (6CKINE; p = 0.02), monocyte chemotactic protein 1 (MCP-1; p = 0.005) and myeloid progenitor inhibitory factor 1 (MPIF-1; p = 0.03). Results were similar when analyses were restricted to NBS from DD and ASD further classified as ASD with intellectual disability (ID), ASD without ID, and DD (GCP-2, p = 0.007; I-TAC, p = 0.001; IP-10, p = 0.005; IL-12p70, p = 0.03 higher in females; MPIF-1, p = 0.03 higher in male). This study is the first to examine sex differences in neonatal cytokine/chemokine concentrations, and whether these differences are associated with neurodevelopmental outcomes. Results highlight the importance of considering sex as a critical factor in understanding the immune system as it relates to child development.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Macrophage Migration-Inhibitory Factors , Sex Factors , Female , Humans , Infant, Newborn , Male , Pregnancy , Case-Control Studies , Chemokine CXCL10 , Interleukin-12 , Intramolecular Oxidoreductases , Neurodevelopmental Disorders
2.
J Dev Behav Pediatr ; 43(8): 465-471, 2022.
Article in English | MEDLINE | ID: mdl-35943360

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the presence of maternal autoantibody-related autism spectrum disorder (MAR-ASD) in 2 geographically distinct DBPNet clinical sites (Pennsylvania and Arkansas). MAR-ASD is a biologically defined subtype of ASD that is defined by the presence of autoantibodies specific to proteins in the fetal brain and present in approximately 20% of a Northern California sample but has not been studied in other states. METHODS: Sixty-eight mothers of children with ASD were recruited from 2 DBPNet clinics and provided blood samples. Mothers also completed behavioral questionnaires about their children, and data from the child's clinical diagnostic assessment were abstracted. RESULTS: The mean age of mothers was 38.5 ± 6.1 years, and the mean age of children was 8.3 ± 2.7 years. MAR-ASD was present in 24% of the sample and similar across sites. Children of +MAR mothers had more severe autism symptoms as measured by Autism Diagnostic Observation Schedule comparison scores (W = 3604; p < 0.001) and the Social Communication Questionnaire (W = 4556; p < 0.001). There were no differences in IQ, adaptive function, or aberrant behavior. CONCLUSION: MAR-ASD is a subtype of autism that is present in similar frequencies across 3 states and related to autism severity.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Adult , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/epidemiology , Autoantibodies , Child , Child, Preschool , Female , Humans , Mothers , Pilot Projects
3.
Front Psychiatry ; 13: 834910, 2022.
Article in English | MEDLINE | ID: mdl-35722542

ABSTRACT

Autism spectrum disorder (ASD) is acknowledged as a highly heterogeneous, behaviorally defined neurodevelopmental disorder with multiple etiologies. In addition to its high heritability, we have come to recognize a role for maternal immune system dysregulation as a prominent risk factor for the development of ASD in the child. Examples of these risk factors include altered cytokine/chemokine activity and the presence of autoantibodies in mothers that are reactive to proteins in the developing brain. In addition to large clinical studies, the development of pre-clinical models enables the ability to evaluate the cellular and molecular underpinnings of immune-related pathology. For example, the novel animal models of maternal autoantibody-related (MAR) ASD described herein will serve as a preclinical platform for the future testing of targeted therapeutics for one 'type' of ASD. Identification of the cellular targets will advance precision medicine efforts toward tailored therapeutics and prevention. This minireview highlights emerging evidence for the role of maternal immune dysregulation as a potential biomarker, as well as a pathologically relevant mechanism for the development of ASD in offspring. Further, we will discuss the current limitations of these models as well as potential avenues for future research.

4.
Mol Psychiatry ; 27(9): 3760-3767, 2022 09.
Article in English | MEDLINE | ID: mdl-35618885

ABSTRACT

Maternal autoantibody-related ASD (MAR ASD) is a subtype of autism in which pathogenic maternal autoantibodies (IgG) cross the placenta, access the developing brain, and cause neurodevelopmental alterations and behaviors associated with autism in the exposed offspring. We previously reported maternal IgG response to eight proteins (CRMP1, CRMP2, GDA LDHA, LDHB, NSE, STIP1, and YBOX) and that reactivity to nine specific combinations of these proteins (MAR ASD patterns) was predictive of ASD risk. The aim of the current study was to validate the previously identified MAR ASD patterns (CRMP1 + GDA, CRMP1 + CRMP2, NSE + STIP1, CRMP2 + STIP1, LDHA + YBOX, LDHB + YBOX, GDA + YBOX, STIP1 + YBOX, and CRMP1 + STIP1) and their accuracy in predicting ASD risk in a prospective cohort employing maternal samples collected prior to parturition. We used prenatal plasma from mothers of autistic children with or without co-occurring intellectual disability (ASD = 540), intellectual disability without autism (ID = 184) and general population controls (GP = 420) collected by the Early Markers for Autism (EMA) study. We found reactivity to one or more of the nine previously identified MAR ASD patterns in 10% of the ASD group compared with 4% of the ID group and 1% of the GP controls (ASD vs GP: Odds Ratio (OR) = 7.81, 95% Confidence Interval (CI) 3.32 to 22.43; ASD vs ID: OR = 2.77, 95% CI (1.19-7.47)) demonstrating that the MAR ASD patterns are strongly associated with the ASD group and could be used to assess ASD risk prior to symptom onset. The pattern most strongly associated with ASD was CRMP1 + CRMP2 and increased the odds for an ASD diagnosis 16-fold (3.32 to >999.99). In addition, we found that several of these specific MAR ASD patterns were strongly associated with ASD with intellectual disability (ASD + ID) and others associated with ASD without ID (ASD-no ID). Prenatal screening for these MAR patterns may lead to earlier identification of ASD and facilitate access to the appropriate early intervention services based on each child's needs.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Child , Pregnancy , Female , Humans , Intellectual Disability/etiology , Prospective Studies , Autism Spectrum Disorder/etiology , Autoantibodies , Biomarkers , Immunoglobulin G
5.
Mol Psychiatry ; 26(5): 1551-1560, 2021 05.
Article in English | MEDLINE | ID: mdl-33483694

ABSTRACT

The incidence of autism spectrum disorder (ASD) has been rising, however ASD-risk biomarkers remain lacking. We previously identified the presence of maternal autoantibodies to fetal brain proteins specific to ASD, now termed maternal autoantibody-related (MAR) ASD. The current study aimed to create and validate a serological assay to identify ASD-specific maternal autoantibody patterns of reactivity against eight previously identified proteins (CRMP1, CRMP2, GDA, NSE, LDHA, LDHB, STIP1, and YBOX) that are highly expressed in developing brain, and determine the relationship of these reactivity patterns with ASD outcome severity. We used plasma from mothers of children diagnosed with ASD (n = 450) and from typically developing children (TD, n = 342) to develop an ELISA test for each of the protein antigens. We then determined patterns of reactivity a highly significant association with ASD, and discovered several patterns that were ASD-specific (18% in the training set and 10% in the validation set vs. 0% TD). The three main patterns associated with MAR ASD are CRMP1 + GDA (ASD% = 4.2 vs. TD% = 0, OR 31.04, p = <0.0001), CRMP1 + CRMP2 (ASD% = 3.6 vs. TD% = 0, OR 26.08, p = 0.0005) and NSE + STIP1 (ASD% = 3.1 vs. TD% = 0, OR 22.82, p = 0.0001). Additionally, we found that maternal autoantibody reactivity to CRMP1 significantly increases the odds of a child having a higher Autism Diagnostic Observation Schedule (ADOS) severity score (OR 2.3; 95% CI: 1.358-3.987, p = 0.0021). This is the first report that uses machine learning subgroup discovery to identify with 100% accuracy MAR ASD-specific patterns as potential biomarkers of risk for a subset of up to 18% of ASD cases in this study population.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autoantibodies , Brain , Child , Female , Humans , Risk Assessment
6.
Brain Behav Immun ; 84: 200-208, 2020 02.
Article in English | MEDLINE | ID: mdl-31812776

ABSTRACT

Autism spectrum disorder (ASD) is an important health issue and affects 1 in 59 children in the US. Prior studies determined that maternal autoantibody related (MAR) autism is thought to be associated with ~23% of ASD cases. We previously identified seven MAR-specific autoantigens including CRMP1, CRMP2, GDA, LDHA, LDHB, STIP1, and YBX1. We subsequently described the epitope peptide sequences recognized by maternal autoantibodies for each of the seven ASD-specific autoantigens. The aim of the current study was to expand upon our previous work and identify additional antigens recognized by the ASD-specific maternal autoantibodies, as well as to map the unique ASD-specific epitopes using microarray technology. Fetal Rhesus macaque brain tissues were separated by molecular weight and a fraction containing bands between 37 and 45 kDa was analyzed using 2-D gel electrophoresis, followed by peptide mass mapping using MALDI-TOF MS and TOF/TOF tandem MS/MS. Using this methodology, Neuron specific enolase (NSE) was identified as a target autoantigen and selected for epitope mapping. The full NSE sequence was translated into 15-mer peptides with an overlap of 14 amino acids onto microarray slides and probed with maternal plasma from mothers with an ASD child and from mothers with a Typically Developing child (TD) (ASD = 27 and TD = 21). The resulting data were analyzed by T-test. We found 16 ASD-specific NSE-peptide sequences for which four sequences were statistically significant (p < 0.05) using both the t-test and SAM t-test: DVAASEFYRDGKYDL (p = 0.047; SAM score 1.49), IEDPFDQDDWAAWSK (p = 0.049; SAM score 1.49), ERLAKYNQLMRIEEE (p = 0.045; SAM score 1.57), and RLAKYNQLMRIEEEL (p = 0.017; SAM score 1.82). We further identified 5 sequences that were recognized by both ASD and TD antibodies suggesting a large immunodominant epitope (DYPVVSIEDPFDQDDWAAW). While maternal autoantibodies against the NSE protein are present both in mothers with ASD and mothers of TD children, there are several ASD-specific epitopes that can potentially be used as MAR ASD biomarkers. Further, studies including analysis of NSE as a target protein in combination with the previously identified MAR ASD autoantigens are currently underway.


Subject(s)
Autism Spectrum Disorder , Biomarkers , Peptides , Phosphopyruvate Hydratase , Animals , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/diagnosis , Autoantibodies , Autoantigens/analysis , Biomarkers/blood , Child , Epitope Mapping , Female , Humans , Macaca mulatta , Peptides/analysis , Phosphopyruvate Hydratase/blood , Phosphopyruvate Hydratase/immunology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...