Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
JACS Au ; 4(2): 744-759, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425934

ABSTRACT

The tandem CO2 hydrogenation to hydrocarbons over mixed metal oxide/zeolite catalysts (OXZEO) is an efficient way of producing value-added hydrocarbons (platform chemicals and fuels) directly from CO2via methanol intermediate in a single reactor. In this contribution, two MAPO-18 zeotypes (M = Mg, Si) were tested and their performance was compared under methanol-to-olefins (MTO) conditions (350 °C, PCH3OH = 0.04 bar, 6.5 gCH3OH h-1 g-1), methanol/CO/H2 cofeed conditions (350 °C, PCH3OH/PCO/PH2 = 1:7.3:21.7 bar, 2.5 gCH3OH h-1 g-1), and tandem CO2 hydrogenation-to-olefin conditions (350 °C, PCO2/PH2 = 7.5:22.5 bar, 1.4-12.0 gMAPO-18 h molCO2-1). In the latter case, the zeotypes were mixed with a fixed amount of ZnO:ZrO2 catalyst, well-known for the conversion of CO2/H2 to methanol. Focus was set on the methanol conversion activity, product selectivity, and performance stability with time-on-stream. In situ and ex situ Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), solid-state nuclear magnetic resonance (NMR), sorption experiments, and ab initio molecular dynamics (AIMD) calculations were performed to correlate material performance with material characteristics. The catalytic tests demonstrated the better performance of MgAPO-18 versus SAPO-18 at MTO conditions, the much superior performance of MgAPO-18 under methanol/CO/H2 cofeeds, and yet the increasingly similar performance of the two materials under tandem conditions upon increasing the zeotype-to-oxide ratio in the tandem catalyst bed. In situ FT-IR measurements coupled with AIMD calculations revealed differences in the MTO initiation mechanism between the two materials. SAPO-18 promoted initial CO2 formation, indicative of a formaldehyde-based decarboxylation mechanism, while CO and ketene were the main constituents of the initiation pool in MgAPO-18, suggesting a decarbonylation mechanism. Under tandem CO2 hydrogenation conditions, the presence of high water concentrations and low methanol partial pressure in the reaction medium led to lower, and increasingly similar, methanol turnover frequencies for the zeotypes. Despite both MAPO-18 zeotypes showing signs of activity loss upon storage due to the interaction of the sites with ambient humidity, they presented a remarkable stability after reaching steady state under tandem reaction conditions and after steaming and regeneration cycles at high temperatures. Water adsorption experiments at room temperature confirmed this observation. The faster activity loss observed in the Mg version is assigned to its harder Mg2+-ion character and the higher concentration of CHA defects in the AEI structure, identified by solid-state NMR and XRD. The low stability of a MgAPO-34 zeotype (CHA structure) upon storage corroborated the relationship between CHA defects and instability.

2.
Nat Commun ; 15(1): 2045, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448464

ABSTRACT

Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO2 to methanol. Herein, we use a controlled two-step method to synthesize finely dispersed Cu on a zeolitic imidazolate framework-8 (ZIF-8). This catalyst suffers a series of transformations during the CO2 hydrogenation to methanol, leading to ~14 nm Cu nanoparticles encapsulated on the Zn-based MOF that are highly active (2-fold higher methanol productivity than the commercial Cu-Zn-Al catalyst), very selective (>90%), and remarkably stable for over 150 h. In situ spectroscopy, density functional theory calculations, and kinetic results reveal the preferential adsorption sites, the preferential reaction pathways, and the reverse water gas shift reaction suppression over this catalyst. The developed material is robust, easy to synthesize, and active for CO2 utilization.

3.
Molecules ; 28(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630347

ABSTRACT

The formose reaction is an autocatalytic series of aldol condensations that allows one to obtain monosaccharides from formaldehyde. The formose reaction suffers from a lack of selectivity, which hinders practical applications at the industrial level. Over the years, many attempts have been made to overcome this selectivity issue, with modest results. Heterogeneous porous catalysts with acid-base properties, such as Metal-Organic Frameworks (MOFs), can offer advantages compared to homogeneous strong bases (e.g., calcium hydroxide) for increasing the selectivity of this important reaction. For the very first time, four different Zeolite Imidazolate Frameworks are presented in this work as catalysts for the formose reaction in liquid phase, and their catalytic performances were compared with those of the typical homogeneous catalyst (i.e., calcium hydroxide). The heterogeneous nature of the catalysis, the possible contribution of leached metal or linkers to the solution, and the stability of the materials were investigated. The porous structure of these solids and their mild basicity make them suitable for obtaining enhanced selectivity at 30% formaldehyde conversion. Most of the MOFs tested showed low structural stability under reaction conditions, thereby indicating the need to search for new MOF families with higher robustness. However, this important result opens the path for future research on porous heterogeneous basic catalysts for the formose reaction.

4.
Chem Mater ; 35(2): 692-699, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-37520114

ABSTRACT

Zeolitic imidazolate frameworks (ZIFs) have been profusely used as catalysts for inserting CO2 into organic epoxides (i.e., epichlorohydrin) through cycloaddition. Here, we demonstrate that these materials suffer from irreversible degradation by leaching. To prove this, we performed the reactions and analyzed the final reaction mixtures by elemental analysis and the resulting materials by different microscopies. We found that the difference in catalytic activity between three ZIF-67 and one ZIF-L catalysts was related to the rate at which the materials degraded. Particularly, the {100} facet leaches faster than the others, regardless of the material used. The catalytic activity strongly depended on the amount of leached elements in the liquid phase since these species are extremely active. Our work points to the instability of these materials under relevant reaction conditions and the necessity of additional treatments to improve their stability.

5.
Materials (Basel) ; 16(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903150

ABSTRACT

SiC is one of the most important ceramics at present due to its excellent properties and wide range of applications. The industrial production method, known as the Acheson method, has not changed in 125 years. Because the synthesis method in the laboratory is completely different, laboratory optimisation may not be extrapolated to the industrial level. In the present study, the results at the industrial level and at the laboratory level of the synthesis of SiC are compared. These results show that it is necessary to make a more detailed analysis of the coke than the traditional one; therefore, the Optical Texture Index (OTI) should be included, as well as the analysis of the metals that form the ashes. It has been found that the main influencing factors are OTI and the presence of Fe and Ni in the ashes. It has been determined that the higher the OTI, as well as the Fe and Ni content, the better the results obtained. Therefore, the use of regular coke is recommended in the industrial synthesis of SiC.

6.
Small Methods ; 7(4): e2201413, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36789569

ABSTRACT

Metal-organic frameworks (MOFs) are porous hybrid materials with countless potential applications. Most of these rely on their porous structure, tunable composition, and the possibility of incorporating and expanding their functions. Although functionalization of the inner surface of MOF crystals has received considerable attention in recent years, methods to functionalize selectively the outer crystal surface of MOFs are developed to a lesser extent, despite their importance. This article summarizes different types of post-synthetic modifications and possible applications of modified materials such as: catalysis, adsorption, drug delivery, mixed matrix membranes, and stabilization of porous liquids.

7.
Molecules ; 27(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36431891

ABSTRACT

One way to exploit CO2 is to use it as a feedstock for the production of cyclic carbonates via its reaction with organic epoxides. As far as we know, there is still no heterogeneous catalyst that accelerates the reaction in a selective, efficient and industrially usable way. Cobalt and zinc-based zeolitic imidazole frameworks (ZIFs) have been explored as heterogeneous catalysts for this reaction. In particular, we have prepared ZIF-8 and ZIF-67 catalysts, which have been modified by partial replacement of 2-methylimidazole by 1,2,4-triazole, in order to introduce uncoordinated nitrogen groups with the metal. The catalysts have shown very good catalytic performance, within the best of the heterogeneous catalysts tested in the cycloaddition of CO2 with epichlorohydrin. The catalytic activity is due ultimately to defects on the outer surface of the crystal, and varies in the order of ZIF-67-m > ZIF-67 > ZiF-8-m = ZIF-8. Notably, reactions take place under mild reaction conditions and without the use of co-catalysts.

8.
Angew Chem Int Ed Engl ; 61(47): e202208677, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36161683

ABSTRACT

Porous organic molecular materials represent an emergent field of research in Chemistry and Materials Science due to their unique combination of properties. To enhance their performance and expand the number of applications, the incorporation of hierarchical porosity is required, as exclusive microporosity entails several limitations. However, the integration of macropores in porous organic molecular materials is still an outstanding challenge. Herein, we report the first example of a hydrogen-bonded organic framework (MM-TPY) with hierarchical skeletal morphology, containing stable micro- and macroporosity. The crystal size, from micro to centimetre scale, can be controlled in a single step without using additives or templates. The mechanism of assembly during the crystal formation is compatible with a skeletal crystal growth. As proof of concept, we employed the hierarchical porosity as a platform for the dual, sequential and selective co-recognition of molecular species and microparticles.

9.
Materials (Basel) ; 15(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36143813

ABSTRACT

MIL-100(Fe) is a metal-organic framework (MOF) characterized by the presence of Lewis acid and Fe(II/III) redox sites. In this work, different synthesis methods for the preparation of MIL-100(Fe) are studied. Depending on the source of fluorine, different phases can be obtained: MIL-100(Fe) and an Fe trimesate with unknown structure which we call Fe(BTC). These materials were characterized using numerous techniques and applied in the reaction of CO2 cycloaddition with epichlorohydrin, a reaction catalyzed by Lewis acid sites. It was observed that samples with more Fe(BTC) phase were more active in the reaction. However, all samples, under reaction conditions, transformed into a less active phase.

10.
Materials (Basel) ; 15(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35407747

ABSTRACT

Nowadays one of the biggest challenges for carbon materials is their use in CO2 capture and their use as electrocatalysts in the oxygen reduction reaction (ORR). In both cases, it is necessary to dope the carbon with nitrogen species. Conventional methods to prepare nitrogen doped carbons such as melamine carbonization or NH3 treatment generate nitrogen doped carbons with insufficient nitrogen content. In the present research, a series of activated carbons derived from MOFs (ZIF-8, ZIF-67) are presented. Activated carbons have been prepared in a single step, by pyrolysis of the MOF in an inert atmosphere, between 600 and 1000 °C. The carbons have a nitrogen content up to 20 at.% and a surface area up to 1000 m2/g. The presence of this nitrogen as pyridine or pyrrolic groups, and as quaternary nitrogen are responsible for the great adsorption capacity of CO2, especially the first two. The presence of Zn and Co generates very different carbonaceous structures. Zn generates a greater porosity development, which makes the doped carbons ideal for CO2 capture. Co generates more graphitized doped carbons, which make them suitable for their use in electrochemistry.

11.
Molecules ; 27(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35335331

ABSTRACT

Herein, it has been developed a method to prepare metallic foams starting from Zamak5 (ZnAlCu alloy) with different pore sizes. The Zamak5 metallic foam is designed to serve as a support and metallic precursor of ZIF-8. In this way, composite materials MOF-metal can be prepared, these composites have a large number of application in energy exchange processe such as: adsorption or chemical reactions. Additionally, this method of sythesizing MOFs is environmentally friendly thanks to absence of solvents. Hanerssing the low melting point of the linker, the linker is infiltrated into the foam where the foam and the linker react to form the ZIF-8. In this way we have managed to transform part of the foam into ZIF-8 crystals that remain adhered to the foam. The foams have been characterized and modeled studying the mechanical and electrical properties, finding that both can be predected by various models. Among these, Ashby and Mortensen models for mechanical properties and Ashby and Percolation model for electrical properties stand.

12.
Front Chem ; 9: 733881, 2021.
Article in English | MEDLINE | ID: mdl-34422775

ABSTRACT

The catalytic reduction of nitrites over Pt-In catalysts supported on activated carbon has been studied in a semi-batch reactor, at room temperature and atmospheric pressure, and using hydrogen as the reducing agent. The influence of the indium content on the activity and selectivity was evaluated. Monometallic Pt catalysts are very active for nitrite reduction, but the addition of up to 1 wt% of indium significantly increases the nitrogen selectivity from 0 to 96%. The decrease in the accessible noble metal surface area reduces the amount of hydrogen available at the catalyst surface, this favoring the combination of nitrogen-containing intermediate molecules to promote the formation of N2 instead of being deeply hydrogenated into NH4+. Several activated carbon-supported Pt-In catalysts, activated under different calcination and reduction temperatures, have been also evaluated in nitrite reduction. The catalyst calcined and reduced at 400°C showed the best performance considering both the activity and the selectivity to nitrogen. This enhanced selectivity is ascribed to the formation of Pt-In alloy. The electronic properties of Pt change upon alloy formation, as it is demonstrated by XPS.

13.
ACS Sustain Chem Eng ; 9(14): 4957-4966, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33868834

ABSTRACT

MAX phases are layered ternary carbides or nitrides that are attractive for catalysis applications due to their unusual set of properties. They show high thermal stability like ceramics, but they are also tough, ductile, and good conductors of heat and electricity like metals. Here, we study the potential of the Ti3AlC2 MAX phase as a support for molybdenum oxide for the reverse water-gas shift (RWGS) reaction, comparing this new catalyst to more traditional materials. The catalyst showed higher turnover frequency values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic properties of the Ti3AlC2 support. We observed a charge transfer effect from the electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2 catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts.

14.
ChemSusChem ; 13(23): 6401-6408, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-32945628

ABSTRACT

MAX (Mn+1 AXn ) phases are layered carbides or nitrides with a high thermal and mechanical bulk stability. Recently, it was shown that their surface structure can be modified to form a thin non-stoichiometric oxide layer, which can catalyze the oxidative dehydrogenation of butane. Here, the use of a Ti2 AlC MAX phase as a support for cobalt oxide was explored for the dry reforming of butane with CO2 , comparing this new catalyst to more traditional materials. The catalyst was active and selective to synthesis gas. Although the surface structure changed during the reaction, the activity remained stable. Under the same conditions, a titania-supported cobalt oxide catalyst gave low activity and stability due to the agglomeration of cobalt oxide particles. The Co3 O4 /Al2 O3 catalyst was active, but the acidic surface led to a faster deactivation. The less acidic surface of the Ti2 AlC was better at inhibiting coke formation. Thanks to their thermal stability and acid-base properties, MAX phases are promising supports for CO2 conversion reactions.

15.
Chemphyschem ; 20(23): 3201-3209, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31562667

ABSTRACT

The physicochemical modification of Metal-Organic Frameworks (MOFs) is a current challenge in the search to improve their performance in different technological applications. In this work we analyze the post-synthetic modification of ZIF-8 crystals and films through a simple and clean treatment that involves the exposure to a UV lamp under environmental conditions. It is demonstrated that a short treatment alters the MOF structure and chemistry, providing a modified ZIF-8 due to partial disconnections of its structure which increase the amount of terminal surface species such as Zn-OH and -C=N-H, but without compromising the overall MOF structure, specific surface area or thermal stability. Additionally, it leads to changes in several properties of the ZIF-8, such as its capacity to accumulate charge through pseudocapacitive processes, its interaction with nitric oxide and its light absorption behavior. This strategy of modifying ZIF-8 without the use of chemicals through a gentle disconnection of its own structure could open new perspectives of post-functionalization of crystals and films of ZIF-8 to be used in a wide range of applications.

16.
Angew Chem Int Ed Engl ; 57(52): 17094-17099, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30398300

ABSTRACT

The synthesis and reactivity of single metal atoms in a low-valence state bound to just water, rather than to organic ligands or surfaces, is a major experimental challenge. Herein, we show a gram-scale wet synthesis of Pt1 1+ stabilized in a confined space by a crystallographically well-defined first water sphere, and with a second coordination sphere linked to a metal-organic framework (MOF) through electrostatic and H-bonding interactions. The role of the water cluster is not only isolating and stabilizing the Pt atoms, but also regulating the charge of the metal and the adsorption of reactants. This is shown for the low-temperature water-gas shift reaction (WGSR: CO + H2 O → CO2 + H2 ), where both metal coordinated and H-bonded water molecules trigger a double water attack mechanism to CO and give CO2 with both oxygen atoms coming from water. The stabilized Pt1+ single sites allow performing the WGSR at temperatures as low as 50 °C.

17.
Chemistry ; 22(29): 10028-35, 2016 Jul 11.
Article in English | MEDLINE | ID: mdl-27273454

ABSTRACT

The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long-distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release.

18.
Chem Sci ; 7(6): 3658-3666, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-29997857

ABSTRACT

The presence of a highly tunable porous structure and surface chemistry makes metal-organic framework (MOF) materials excellent candidates for artificial methane hydrate formation under mild temperature and pressure conditions (2 °C and 3-5 MPa). Experimental results using MOFs with a different pore structure and chemical nature (MIL-100 (Fe) and ZIF-8) clearly show that the water-framework interactions play a crucial role in defining the extent and nature of the gas hydrates formed. Whereas the hydrophobic MOF promotes methane hydrate formation with a high yield, the hydrophilic one does not. The formation of these methane hydrates on MOFs has been identified for the first time using inelastic neutron scattering (INS) and synchrotron X-ray powder diffraction (SXRPD). The results described in this work pave the way towards the design of new MOF structures able to promote artificial methane hydrate formation upon request (confined or non-confined) and under milder conditions than in nature.

19.
Dalton Trans ; 42(15): 5546-53, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23426160

ABSTRACT

We report the synthesis and characterization of new V2O5/Al2O3-MgO catalysts and their application in oxidative dehydrogenation and epoxidation reactions. The materials were prepared by wet impregnation under excess acid conditions. Anchoring of the desired species on the support occurs via an exchange reaction between the vanadium complex and surface hydroxyl groups. The IR and UV-Vis spectra of these catalysts indicate the presence of monomeric vanadium species at 5 wt% V2O5 loading, along with small amounts of polymeric species at 5 and 10 wt% V2O5 loadings. Electron paramagnetic resonance (EPR) spectroscopy reveals the presence of ferromagnetic VO(2+) dimers following calcination at 773 K. The catalysts were then tested in two reactions, namely the gas phase oxidative dehydrogenation of n-butane under flow conditions at 773 K and the liquid phase epoxidation of limonene with H2O2. The dehydrogenation reaction gave butenes and 1,3-butadiene in moderate selectivity at 8-10% conversion. The epoxidation of limonene was less successful, giving 50-70% selectivity to the 1,2-epoxide at 10-20% conversion.

20.
Langmuir ; 28(35): 12916-22, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22891682

ABSTRACT

A series of amino-functionalized MIL-53 with different metals as nodes has been synthesized. By determining adsorption properties and spectroscopic characterization, we unequivocally show that the interaction between the amines of the organic linker and bridging µ(2)-OH of the inorganic scaffold modulates metal organic framework (MOF) flexibility. The strength of the interaction has been found to correlate with the electropositivity of the metal.


Subject(s)
Amines/chemistry , Organometallic Compounds/chemistry , Adsorption , Carbon Dioxide/chemistry , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...