Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Drug Deliv Transl Res ; 13(6): 1745-1765, 2023 06.
Article in English | MEDLINE | ID: mdl-36853436

ABSTRACT

There is currently no causal treatment available for Parkinson's disease (PD). However, the use of glial cell line-derived neurotrophic factor (GDNF) to provide regenerative effects for neurons is promising. Such approaches require translational delivery systems that are functional in diseased tissue. To do so, we used a non-viral Sleeping Beauty (SB) transposon system to overexpress GDNF in adipose tissue-derived mesenchymal stromal cells (adMSCs). Entrapment of cells in fibrin hydrogel was used to boost potential neurorestorative effects. Functional GDNF-adMSCs were able to secrete 1066.8 ± 169.4 ng GDNF/120,000 cells in vitro. The GDNF-adMSCs were detectable for up to 1 month after transplantation in a mild 6-hydroxydopamine (6-OHDA) hemiparkinson male rat model. Entrapment of GDNF-adMSCs enabled GDNF secretion in surrounding tissue in a more concentrated manner, also tending to prolong GDNF secretion relatively. GDNF-adMSCs entrapped in hydrogel also led to positive immunomodulatory effects via an 83% reduction of regional IL-1ß levels compared to the non-entrapped GDNF-adMSC group after 1 month. Furthermore, GDNF-adMSC-treated groups showed higher recovery of tyrosine hydroxylase (TH)-expressing cells, indicating a neuroprotective function, although this was not strong enough to show significant improvement in motor performance. Our findings establish a promising GDNF treatment system in a PD model. Entrapment of GDNF-adMSCs mediated positive immunomodulatory effects. Although the durability of the hydrogel needs to be extended to unlock its full potential for motor improvements, the neuroprotective effects of GDNF were evident and safe. Further motor behavioral tests and other disease models are necessary to evaluate this treatment option adequately.


Subject(s)
Mesenchymal Stem Cells , Parkinson Disease , Rats , Male , Animals , Parkinson Disease/etiology , Parkinson Disease/therapy , Rats, Sprague-Dawley , Glial Cell Line-Derived Neurotrophic Factor , Hydrogels , Disease Models, Animal
2.
J Tissue Eng Regen Med ; 16(6): 515-529, 2022 06.
Article in English | MEDLINE | ID: mdl-35278347

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) has neuroprotective effects and may be a promising candidate for regenerative strategies focusing on neurodegenerative diseases. As GDNF cannot cross the blood-brain barrier to potentially regenerate damaged brain areas, continuous in situ delivery with host cells is desired. Here, a non-viral Sleeping Beauty transposon was used to achieve continuous in vitro overexpression of GDNF in immune-privileged human adipose tissue-derived mesenchymal stromal cells (GDNF-tASCs). In addition, in vivo survival, tolerance, and effectiveness of transfected cells were tested in a very mild 6-hydroxydopamine (6-OHDA)-induced dopamine depletion rat model by means of intrastriatal injection on a sample basis up to 6 months after treatment. GDNF-tASCs showed vast in vitro gene overexpression up to 13 weeks post-transfection. In vivo, GDNF was detectable 4 days following transplantation, but no longer after 1 month, although adipose tissue-derived mesenchymal stromal cells (ASCs) could be visualized histologically even after 6 months. Despite successful long-term in vitro GDNF overexpression and its in vivo detection shortly after cell transplantation, the 6-OHDA model was too mild to enable sufficient evaluation of in vivo disease improvement. Still, in vivo immunocompatibility could be further examined. ASCs initially induced a pronounced microglial accumulation at transplantation site, particularly prominent in GDNF-tASCs. However, 6-OHDA-induced pro-inflammatory immune response was attenuated by ASCs, although delayed in the GDNF-tASCs group. To further test the therapeutic potential of the generated GDNF-overexpressing cells in a disease-related context, a follow-up study using a more appropriate 6-OHDA model is needed.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Mesenchymal Stem Cells , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Disease Models, Animal , Follow-Up Studies , Glial Cell Line-Derived Neurotrophic Factor/biosynthesis , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Oxidopamine/pharmacology , Rats , Rats, Sprague-Dawley
3.
Sci Rep ; 10(1): 18215, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106576

ABSTRACT

Glucose hypometabolism potentially contributes to Alzheimer's disease (AD) and might even represent an underlying mechanism. Here, we investigate the relationship of diet-induced metabolic stress and AD as well as the therapeutic potential of chia seeds as a modulator of glucose metabolism in the APP23 mouse model. 4-6 (pre-plaque stage, PRE) and 28-32 (advanced-plaque stage, ADV) weeks old APP23 and wild type mice received pretreatment for 12 weeks with either sucrose-rich (SRD) or control diet, followed by 8 weeks of chia seed supplementation. Although ADV APP23 mice generally showed functioning glucose homeostasis, they were more prone to SRD-induced glucose intolerance. This was accompanied by elevated corticosterone levels and mild insulin insensitivity. Chia seeds improved spatial learning deficits but not impaired cognitive flexibility, potentially mediated by amelioration of glucose tolerance, attenuation of corticosterone levels and reversal of SRD-induced elevation of pro-inflammatory cytokine levels. Since cognitive symptoms and plaque load were not aggravated by SRD-induced metabolic stress, despite enhanced neuroinflammation in the PRE group, we conclude that impairments of glucose metabolism do not represent an underlying mechanism of AD in this mouse model. Nevertheless, chia seeds might provide therapeutic potential in AD as shown by the amelioration of cognitive symptoms.


Subject(s)
Alzheimer Disease/diet therapy , Amyloid beta-Protein Precursor/genetics , Cognition/drug effects , Disease Models, Animal , Glucose/metabolism , Insulin Resistance , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animal Feed , Animals , Diet , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Salvia/chemistry , Seeds/chemistry
4.
J Neuroinflammation ; 15(1): 162, 2018 May 26.
Article in English | MEDLINE | ID: mdl-29803225

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is characterized by dopaminergic cell loss and inflammation in the substantia nigra (SN) leading to motor deficits but also to hippocampus-associated non-motor symptoms such as spatial learning and memory deficits. The cognitive decline is correlated with impaired adult hippocampal neurogenesis resulting from dopamine deficit and inflammation, represented in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model of PD. In the inflammatory tissue, cyclooxygenase (COX) is upregulated leading to an ongoing inflammatory process such as prostaglandin-mediated increased cytokine levels. Therefore, inhibition of COX by indomethacin may prevent the inflammatory response and the impairment of adult hippocampal neurogenesis. METHODS: Wildtype C57Bl/6 and transgenic Nestin-GFP mice were treated with MPTP followed by short-term or long-term indomethacin treatment. Then, aspects of inflammation and neurogenesis were evaluated by cell counts using immunofluorescence and immunohistochemical stainings in the SN and dentate gyrus (DG). Furthermore, hippocampal mRNA expression of neurogenesis-related genes of the Notch, Wnt, and sonic hedgehog signaling pathways and neurogenic factors were assessed, and protein levels of serum cytokines were measured. RESULTS: Indomethacin restored the reduction of the survival rate of new mature neurons and reduced the amount of amoeboid CD68+ cells in the DG after MPTP treatment. Indomethacin downregulated genes of the Wnt and Notch signaling pathways and increased neuroD6 expression. In the SN, indomethacin reduced the pro-inflammatory cellular response without reversing dopaminergic cell loss. CONCLUSION: Indomethacin has a pro-neurogenic and thereby restorative effect and an anti-inflammatory effect on the cellular level in the DG following MPTP treatment. Therefore, COX inhibitors such as indomethacin may represent a therapeutic option to restore adult neurogenesis in PD.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Dopaminergic Neurons/pathology , Hippocampus/drug effects , Indomethacin/therapeutic use , MPTP Poisoning/pathology , Neurogenesis/drug effects , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bromodeoxyuridine/metabolism , Disease Models, Animal , Dopaminergic Neurons/drug effects , Doublecortin Domain Proteins , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nestin/genetics , Nestin/metabolism , Neurogenesis/physiology , Neuropeptides/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Time Factors
5.
Behav Brain Res ; 347: 300-313, 2018 07 16.
Article in English | MEDLINE | ID: mdl-29572105

ABSTRACT

Recent research on Alzheimer's disease (AD) focuses on processes prior to amyloid-beta plaque deposition accounting for the progress of the disease. However, early mechanisms of AD are still poorly understood and predictors of the disease in the pre-plaque stage essential for initiating an early therapy are lacking. Behavioral and psychological symptoms of dementia (BPSD) and potentially impaired cognition may serve as predictors and early clinical diagnostic markers for AD. To investigate potential BPSD and cognitive impairments in association with neuronal cell development as such markers for AD in the pre-plaque stage, female APP23 mice at eight, 19 and 31 weeks of age and corresponding control animals were tested for BPSD (elevated zero maze; sucrose preference test), motor coordination (rotarod), spatial memory and reversal learning (Morris water maze) and hippocampal neurogenesis as a neuronal correlate for hippocampus-dependent behavior. To evaluate a potential therapeutic effect of physical, cognitive and social stimulation, animals were exposed to environmental enrichment (EE) for one, twelve or 24 weeks from five weeks of age. In APP23, decreased anxiety accompanied increased agitation from eight weeks of age. Impairment of spatial memory and learning flexibility prior to plaque deposition involved an insufficient use of spatial search strategies associated with an unsuccessful compensatory increase of neurogenesis. EE had an overall beneficial effect on behavior and neurogenesis and thus constitutes a therapeutic tool to slow disease progression. BPSD, cognition and associated impaired neurogenesis complement clinical diagnostic markers for pre-plaque AD and contribute to an early detection essential to halt disease progression.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Cognition , Hippocampus/pathology , Reversal Learning , Spatial Memory , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Anhedonia , Animals , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/therapy , Disease Models, Animal , Disease Progression , Environment , Female , Food Preferences , Housing, Animal , Humans , Maze Learning , Mice, Inbred C57BL , Mice, Transgenic , Motor Skills , Neurogenesis , Neurons/pathology , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL