Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Imaging Radiat Oncol ; 27: 100485, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37705727

ABSTRACT

Large Digital Imaging and Communications in Medicine (DICOM) datasets are key to support research and the development of machine learning technology in radiotherapy (RT). However, the tools for multi-centre data collection, curation and standardisation are not readily available. Automated batch DICOM export solutions were demonstrated for a multicentre setup. A Python solution, Collaborative DICOM analysis for RT (CORDIAL-RT) was developed for curation, standardisation, and analysis of the collected data. The setup was demonstrated in the DBCG RT-Nation study, where 86% (n = 7748) of treatments in the inclusion period were collected and quality assured, supporting the applicability of the end-to-end framework.

2.
Med Phys ; 50(1): 20-29, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36354288

ABSTRACT

BACKGROUND: During prostate stereotactic body radiation therapy (SBRT), prostate tumor translational motion may deteriorate the planned dose distribution. Most of the major advances in motion management to date have focused on correcting this one aspect of the tumor motion, translation. However, large prostate rotation up to 30° has been measured. As the technological innovation evolves toward delivering increasingly precise radiotherapy, it is important to quantify the clinical benefit of translational and rotational motion correction over translational motion correction alone. PURPOSE: The purpose of this work was to quantify the dosimetric impact of intrafractional dynamic rotation of the prostate measured with a six degrees-of-freedom tumor motion monitoring technology. METHODS: The delivered dose was reconstructed including (a) translational and rotational motion and (b) only translational motion of the tumor for 32 prostate cancer patients recruited on a 5-fraction prostate SBRT clinical trial. Patients on the trial received 7.25 Gy in a treatment fraction. A 5 mm clinical target volume (CTV) to planning target volume (PTV) margin was applied in all directions except the posterior direction where a 3 mm expansion was used. Prostate intrafractional translational motion was managed using a gating strategy, and any translation above the gating threshold was corrected by applying an equivalent couch shift. The residual translational motion is denoted as T r e s $T_{res}$ . Prostate intrafractional rotational motion R u n c o r r $R_{uncorr}$ was recorded but not corrected. The dose differences from the planned dose due to T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ , ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) and due to T r e s $T_{res}$ alone, ΔD( T r e s $T_{res}$ ), were then determined for CTV D98, PTV D95, bladder V6Gy, and rectum V6Gy. The residual dose error due to uncorrected rotation, R u n c o r r $R_{uncorr}$ was then quantified: Δ D R e s i d u a l $\Delta D_{Residual}$ = ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) - ΔD( T res ${T}_{\textit{res}}$ ). RESULTS: Fractional data analysis shows that the dose differences from the plan (both ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) and ΔD( T r e s $T_{res}$ )) for CTV D98 was less than 5% in all treatment fractions. ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) was larger than 5% in one fraction for PTV D95, in one fraction for bladder V6Gy, and in five fractions for rectum V6Gy. Uncorrected rotation, R u n c o r r $R_{uncorr}$ induced residual dose error, Δ D R e s i d u a l $\Delta D_{Residual}$ , resulted in less dose to CTV and PTV in 43% and 59% treatment fractions, respectively, and more dose to bladder and rectum in 51% and 53% treatment fractions, respectively. The cumulative dose over five fractions, ∑D( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) and ∑D( T r e s $T_{res}$ ), was always within 5% of the planned dose for all four structures for every patient. CONCLUSIONS: The dosimetric impact of tumor rotation on a large prostate cancer patient cohort was quantified in this study. These results suggest that the standard 3-5 mm CTV-PTV margin was sufficient to account for the intrafraction prostate rotation observed for this cohort of patients, provided an appropriate gating threshold was applied to correct for translational motion. Residual dose errors due to uncorrected prostate rotation were small in magnitude, which may be corrected using different treatment adaptation strategies to further improve the dosimetric accuracy.


Subject(s)
Prostatic Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Male , Humans , Prostate , Rotation , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/surgery , Radiotherapy, Intensity-Modulated/methods
3.
Med Phys ; 49(6): 3574-3584, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35395104

ABSTRACT

BACKGROUND: Hypofractionation in prostate radiotherapy is of increasing interest. Steep dose gradients and a large weight on each individual fraction emphasize the need for motion management. Real-time motion management techniques such as multileaf collimator (MLC) tracking or couch tracking typically adjust for translational motion while rotations remain uncompensated with unknown dosimetric impact. PURPOSE: The purpose of this study is to demonstrate and validate dynamic real-time rotation-including dose reconstruction during radiotherapy experiments with and without MLC and couch tracking. METHODS: Real-time dose reconstruction was performed using the in-house developed software DoseTracker. DoseTracker receives streamed target positions and accelerator parameters during treatment delivery and uses a pencil beam algorithm with water density assumption to reconstruct the dose in a moving target. DoseTracker's ability to reconstruct motion-induced dose errors in a dynamically rotating and translating target was investigated during three different scenarios: (1) no motion compensation and translational motion correction with (2) MLC tracking and (3) couch tracking. In each scenario, dose reconstruction was performed online and in real time during delivery of two dual-arc volumetric-modulated arc therapy prostate plans with a prescribed fraction dose of 7 Gy to the prostate and simultaneous intraprostatic lesion boosts with doses of at least 8 Gy, but up to 10 Gy as long as the organs at risk dose constraints were fulfilled. The plans were delivered to a pelvis phantom that replicated three patient-measured motion traces using a rotational insert with 21 layers of EBT3 film spaced 2.5 mm apart. DoseTracker repeatedly calculated the actual motion-including dose increment and the planned static dose increment since the last calculation in 84 500 points in the film stack. The experiments were performed with a TrueBeam accelerator with MLC and couch tracking based on electromagnetic transponders embedded in the film stack. The motion-induced dose error was quantified as the difference between the final cumulative dose with motion and without motion using the 2D 2%/2 mm γ-failure rate and the difference in dose to 95% of the clinical target volume (CTV ΔD95% ) and the gross target volume (GTV ΔD95% ) as well as the difference in dose to 0.1 cm3 of the urethra, bladder, and rectum (ΔD0.1CC ). The motion-induced errors were compared between dose reconstructions and film measurements. RESULTS: The dose was reconstructed in all calculation points at a mean frequency of 4.7 Hz. The root-mean-square difference between real-time reconstructed and film-measured motion-induced errors was 3.1%-points (γ-failure rate), 0.13 Gy (CTV ΔD95% ), 0.23 Gy (GTV ΔD95% ), 0.19 Gy (urethra ΔD0.1CC ), 0.09 Gy (bladder ΔD0.1CC ), and 0.07 Gy (rectum ΔD0.1CC ). CONCLUSIONS: In a series of phantom experiments, online real-time rotation-including dose reconstruction was performed for the first time. The calculated motion-induced errors agreed well with film measurements. The dose reconstruction provides a valuable tool for monitoring dose delivery and investigating the efficacy of advanced motion-compensation techniques in the presence of translational and rotational motion.


Subject(s)
Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Male , Phantoms, Imaging , Prostate , Prostatic Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
4.
Radiother Oncol ; 164: 175-182, 2021 11.
Article in English | MEDLINE | ID: mdl-34597738

ABSTRACT

PURPOSE: The outcome of radiotherapy is a direct consequence of the dose delivered to the patient. Yet image-guidance and motion management to date focus on geometrical considerations as a practical surrogate for dose. Here, we propose real-time dose-guidance realized through continuous motion-including dose reconstructions and demonstrate this new concept in simulated liver stereotactic body radiotherapy (SBRT) delivery. MATERIALS AND METHODS: During simulated liver SBRT delivery, in-house developed software performed real-time motion-including reconstruction of the tumor dose delivered so far and continuously predicted the remaining fraction tumor dose. The total fraction dose was estimated as the sum of the delivered and predicted doses, both with and without the emulated couch correction that maximized the predicted final CTV D95% (minimum dose to 95% of the clinical target volume). Dose-guided treatments were simulated for 15 liver SBRT patients previously treated with tumor motion monitoring, using both sinusoidal tumor motion and the actual patient-measured motion. A dose-guided couch correction was triggered if it improved the predicted final CTV D95% with 3, 4 or 5 %-points. The final CTV D95% of the dose-guidance strategy was compared with simulated treatments using geometry guided couch corrections (Wilcoxon signed-rank test). RESULTS: Compared to geometry guidance, dose-guided couch corrections improved the median CTV D95% with 0.5-1.5 %-points (p < 0.01) for sinusoidal motions and with 0.9 %-points (p < 0.01, 3 %-points trigger threshold), 0.5 %-points (p = 0.03, 4 %-points threshold) and 1.2 %-points (p = 0.09, 5 %-points threshold) for patient-measured tumor motion. CONCLUSION: Real-time dose-guidance was proposed and demonstrated to be superior to geometrical adaptation in liver SBRT simulations.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Humans , Motion , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
5.
Acta Oncol ; 60(10): 1275-1282, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34224288

ABSTRACT

BACKGROUND: Visual inspections of anatomical changes observed on daily cone-beam CT (CBCT) images are often used as triggers for radiotherapy plan adaptation to avoid unacceptable dose levels to the target or OARs. Direct CBCT dose calculations would improve the ability to adapt only those plans where dosimetric changes are observed. This study investigates the accuracy of dose calculations on CBCTs. MATERIALS AND METHODS: Calibration curves were obtained for CBCT imagers at nine identical accelerators. CBCT scans of a phantom with different density inserts were recorded for two scan modes (Head-Neck and Pelvis) and mean calibration curves were calculated. Subsequently, CBCT scans of the phantom with six different density inserts were recorded, the dose distributions on the CBCTs were calculated and compared to dose on the planning CT (pCT). The uncertainty was quantified by the dosimetric difference between the pCT and the CBCT. The two mean calibration curves were used to calculate the daily delivered CBCT dose for ten Head-Neck-, eleven Lung-, and ten pelvic patients. Additional patient calculations were performed using low-HU empirically corrected calibration curves. Patient doses were compared on target coverage and mean dose, and D1cc for OARs. RESULTS: The dose differences between pCT and CBCT for phantom data were small for all DVH parameters, with mean deviations below ±0.6% for both CBCT modes. For patient data, it was found that low-HU corrected calibration curves performed the best. The mean deviations for the mean dose and coverage of the target were 0.2%±0.7% and 0.1%±0.6%, across all patient groups. CONCLUSION: Dose calculation on CBCT images results in target coverage and mean dose with an accuracy of the order of 1%, which makes this acceptable for clinical use. The CBCT mode specific calibration curves can be used at all identical imaging devices and for all patient groups.


Subject(s)
Cone-Beam Computed Tomography , Radiotherapy, Intensity-Modulated , Calibration , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
6.
Med Phys ; 48(3): 1427-1435, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33415778

ABSTRACT

PURPOSE: Intrafractional motion during radiotherapy delivery can deteriorate the delivered dose. Dynamic rotational motion of up to 38 degrees has been reported during prostate cancer radiotherapy, but methods to determine the dosimetric consequences of such rotations are lacking. Here, we create and experimentally validate a dose reconstruction method that accounts for dynamic rotations and translations in a commercial treatment planning system (TPS). Interplay effects are quantified by comparing dose reconstructions with dynamic and constant rotations. METHODS: The dose reconstruction accumulates the dose in points of interest while the points are moved in six degrees of freedom (6DoF) in a precalculated time-resolved four-dimensional (4D) dose matrix to emulate dynamic motion in a patient. The required 4D dose matrix was generated by splitting the original treatment plan into multiple sub-beams, each representing 0.4 s dose delivery, and recalculating the dose of the split plan in the TPS (Eclipse). The dose accumulation was performed via TPS scripting by querying the dose of each sub-beam in dynamically moving points, allowing dose reconstruction with any dynamic motion. The dose reconstruction was validated with film dosimetry for two prostate dual arc VMAT plans with intra-prostatic lesion boosts. The plans were delivered to a pelvis phantom with internal dynamic rotational motion of a film stack (21 films with 2.5 mm separation). Each plan was delivered without motion and with three prostate motion traces. Motion-including dose reconstruction was performed for each motion experiment using the actual dynamic rotation as well as a constant rotation equal to the mean rotation during the experiment. For each experiment, the 3%/2 mm γ failure rate of the TPS dose reconstruction was calculated with the film measurement being the reference. For each motion experiment, the motion-induced 3%/2 mm γ failure rate was calculated using the static delivery as the reference and compared between film measurements and TPS dose reconstruction. DVH metrics for RT structures fully contained in the film volume were also compared between film and TPS. RESULTS: The mean γ failure rate of the TPS dose reconstructions when compared to film doses was 0.8% (two static experiments) and 1.7% (six dynamic experiments). The mean (range) of the motion-induced γ failure rate in film measurements was 35.4% (21.3-59.2%). The TPS dose reconstruction agreed with these experimental γ failure rates with root-mean-square errors of 2.1% (dynamic rotation dose reconstruction) and 17.1% (dose reconstruction assuming constant rotation). By DVH metrics, the mean (range) difference between dose reconstructions with dynamic and constant rotation was 4.3% (-0.3-10.6%) (urethra D 2 % ), -0.6% (-5.6%-2.5%) (urethra D 99 % ), 1.1% (-7.1-7.7%) (GTV D 2 % ), -1.4% (-17.4-7.1%) (GTV D 95 % ), -1.2% (-17.1-5.7%) (GTV D 99 % ), and -0.1% (-3.2-7.6%) (GTV mean dose). Dose reconstructions with dynamic motion revealed large interplay effects (cold and hot spots). CONCLUSIONS: A method to perform dose reconstructions for dynamic 6DoF motion in a TPS was developed and experimentally validated. It revealed large differences in dose distribution between dynamic and constant rotations not identifiable through dose reconstructions with constant rotation.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Male , Phantoms, Imaging , Radiometry , Radiotherapy Dosage
7.
Radiother Oncol ; 144: 93-100, 2020 03.
Article in English | MEDLINE | ID: mdl-31786423

ABSTRACT

PURPOSE: To investigate the potential benefit of multileaf collimator (MLC) tracking guided by kilovoltage intrafraction monitoring (KIM) during stereotactic body radiotherapy (SBRT) in the liver, and to understand trends of target overdose with MLC tracking. METHODS: Six liver SBRT patients with 2-3 implanted gold markers received SBRT delivered with volumetric modulated arc therapy (VMAT) in three fractions using daily cone-beam CT setup. The CTV-to-PTV margins were 5 mm in the axial plane and 10 mm in the cranio-caudal directions, and the plans were designed to give minimum target doses of 95% (CTV) and 67% (PTV). The three-dimensional marker trajectory estimated by post-treatment analysis of kV fluoroscopy images acquired throughout treatment delivery was assumed to represent the tumor motion. MLC tracking guided by real-time KIM was simulated. The reduction in CTV D95 (minimum dose to 95% of the clinical target volume) relative to the planned D95 (ΔD95) was compared between actual non-tracking and simulated MLC tracking treatments. RESULTS: MLC tracking maintained a high CTV dose coverage for all 18 fractions with ΔD95 (mean: 0.2 percentage points (pp), range: -1.7 to 1.9 pp) being significantly lower than for the actual non-tracking treatments (mean: 6.3 pp range: 0.6-16.0 pp) (p = 0.002). MLC tracking of large target motion perpendicular to the MLC leaves created dose artifacts with regions of overdose in the CTV. As a result, the mean dose in spherical volumes centered in the middle of the CTV was on average 2.4 pp (5 mm radius sphere) and 1.3 pp (15 mm radius sphere) higher than planned (p = 0.002). CONCLUSIONS: Intrafraction tumor motion can deteriorate the CTV dose of liver SBRT. The planned CTV dose coverage may be restored with KIM-guided MLC tracking. However, MLC tracking may have a tendency to create hotspots in the CTV.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Humans , Liver , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
8.
Med Phys ; 46(11): 4738-4748, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31468543

ABSTRACT

PURPOSE: In radiotherapy, tumor motion may deteriorate the planned dose distribution. However, the dosimetric consequences of the motion are normally unknown for individual treatments. We here present a method for real-time motion-including tumor dose reconstruction and demonstrate its use for simulated stereotactic body radiotherapy (SBRT) of patients with liver cancer previously treated with Calypso-guided gating. METHODS: Real-time motion-including dose reconstruction was performed using in-house developed software, DoseTracker, on offline replays of previous clinical treatments. The patient cohort consisted of fifteen patients previously treated in our clinic with three-fraction SBRT to the liver using conformal or IMRT plans. The tumor motion at treatment was monitored with implanted electromagnetic transponders. The dose reconstruction was performed for both the actual gated treatments and simulated nongated treatments using a 21 Hz data stream containing accelerator parameters and the recorded motion. The dose was reconstructed in the same calculation points within the planning target volume (PTV) as used by the treatment planning system (TPS). The reconstructed doses were compared with calculations performed in the TPS, in which the motion was modeled as a series of isocenter shifts. The comparison included point doses as a function of treatment time and the dose volume histogram (DVH) for the clinical target volume (CTV). The motion-induced reduction in the dose to 95% of the CTV, Δ D 95 % , and in the mean CTV dose, ΔDMean , was compared between DoseTracker and the TPS for each simulated fraction. DoseTracker currently assumes water density within the patient contour, so for comparison, the TPS calculations were performed with both CT density and water density. The calculation times were additionally analyzed. RESULTS: Dose reconstruction was carried out for ninety SBRT sessions with calculation volumes ranging from 9.9 to 366.4 cm3 and median calculation times of 55-155 ms (equivalent to 18.2-6.5 Hz). Time-resolved trends of doses to a single calculation point in the patient were well replicated and dose differences between actual and planned calculations matched well. ΔDMean had a range of -0.1%-30.7%-points and was estimated by DoseTracker with a root-mean-square deviation (RMSD) to the TPS calculations of 0.43%-points (water density) and 0.79%-points (CT density). Similarly, Δ D 95 % had a range of 0.0%-35.2%-points and was estimated by DoseTracker with an RMSD of 0.80%-points (water density) and 1.33%-points (CT density). DoseTracker predicted losses in tumor dose coverage above 5%-points with high sensitivity (91.7%) and specificity (97.6%). CONCLUSIONS: Real-time dose reconstruction to moving tumors was demonstrated on offline replays of previous clinical treatments. DVHs of actually delivered dose are made available immediately after the end of treatment fractions. It shows promising results for liver SBRT with accurate estimation of CTV dose deteriorations caused by motion during treatment.


Subject(s)
Liver Neoplasms/physiopathology , Liver Neoplasms/radiotherapy , Models, Theoretical , Movement , Radiation Dosage , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Dosage , Time Factors
9.
Radiother Oncol ; 139: 66-71, 2019 10.
Article in English | MEDLINE | ID: mdl-31431367

ABSTRACT

PURPOSE: To clinically implement and characterize real-time motion-including tumor dose reconstruction during radiotherapy delivery. METHODS: Seven patients with 2-3 fiducial markers implanted near liver tumors received stereotactic body radiotherapy on a conventional linear accelerator. The 3D marker motion during a setup CBCT scan was determined online from the CBCT projections and used to generate a correlation model between tumor and external marker block motion. During treatment, the correlation model was updated by kV imaging every three seconds and used for real-time tumor localization. Using streamed accelerator parameters and tumor positions, in-house developed software, DoseTracker, calculated the dose to the moving tumor in real-time assuming water density in the patient. Post-treatment, the real-time tumor localization was validated by comparison with independent marker segmentations and 3D motion estimations. Dose reconstruction was validated by comparison with treatment planning system (TPS) calculations that modeled motion as isocenter shifts and used both actual CT densities and water densities. RESULTS: The real-time estimated tumor position had a mean 3D root-mean-square error of 1.7 mm (range: 0.9-2.6 mm). The motion-induced reduction in the minimum dose to 95% of the clinical target volume (CTV D95) per fraction was up to 12.3%-points. It was estimated in real-time by DoseTracker during patient treatment with a root-mean-square difference relative to the TPS of 1.3%-points (TPS CT) and 1.0%-points (TPS water). CONCLUSIONS: The world's first clinical real-time motion-including tumor dose reconstruction during radiotherapy was demonstrated. This marks an important milestone for real-time in-treatment quality assurance and paves the way for real-time dose-guided treatment adaptation.


Subject(s)
Liver Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Motion , Radiotherapy Dosage
10.
Radiother Oncol ; 136: 161-168, 2019 07.
Article in English | MEDLINE | ID: mdl-31015120

ABSTRACT

BACKGROUND AND PURPOSE: Detailed knowledge of target motion is important for improved accuracy and decreased toxicity of esophageal cancer radiotherapy. This study uses the 3D trajectories of implanted markers during setup CBCT scans to investigate the intra- and interfractional tumor motion in esophageal cancer radiotherapy. MATERIAL AND METHODS: For 21 esophageal cancer patients with implanted fiducial markers, 60-s 3D marker trajectories were estimated from the 2D marker positions in the projections of daily setup CBCT scans by a probability-based method. The motion was separated into respiratory and cardiac components by frequency analysis and motion magnitude (2nd-98th percentile) was extracted for each marker. The mean motion was calculated over all markers. The daily mean setup interfraction error for bony-anatomy and soft-tissue setup was used to estimate the margin accounting for interfractional motion. RESULTS: A total of 1036 marker trajectories were extracted using 427 CBCT scans and 63 markers. The mean motion magnitude over all markers was 2.9 mm (left-right (LR)), 8.8 mm (cranio-caudal (CC)) and 4.1 mm (anterior-posterior (AP)) for the full motion during CBCT acquisition with mean magnitudes of 2.7 mm (LR), 8.4 mm (CC) and 3.5 mm (AP) for respiratory motion and 1.0 mm (LR), 1.5 mm (CC) and 1.4 mm (AP) for cardiac motion. Substantial daily marker shifts relative to bones resulted in margins of 8.9 mm (LR), 9.5 mm (CC), and 7.3 mm (AP). Soft-tissue based setup in and near the CTV combined with rescanning of patients with anatomical changes reduced the margins to 6.9 mm (LR), 6.8 mm (CC), and 5.6 mm (AP). CONCLUSIONS: Esophageal tumor motion was mapped with unprecedented detail throughout the radiotherapy course. Respiratory motion dominated and was largest in the CC direction. Soft-tissue matching and an adaptive strategy reduced interfractional margins by 2-3 mm compared to bony-anatomy matching.


Subject(s)
Esophageal Neoplasms/radiotherapy , Aged , Cone-Beam Computed Tomography , Esophageal Neoplasms/diagnostic imaging , Female , Fiducial Markers , Humans , Male , Middle Aged , Motion , Radiotherapy Planning, Computer-Assisted/methods , Uncertainty
11.
Med Phys ; 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29869789

ABSTRACT

PURPOSE: In radiotherapy, dose deficits caused by tumor motion often far outweigh the discrepancies typically allowed in plan-specific quality assurance (QA). Yet, tumor motion is not usually included in present QA. We here present a novel method for online treatment verification by real-time motion-including four-dimensional (4D) dose reconstruction and dose evaluation and demonstrate its use during stereotactic body radiotherapy (SBRT) delivery with and without MLC tracking. METHODS: Five volumetric-modulated arc therapy (VMAT) plans were delivered with and without MLC tracking to a motion stage carrying a Delta4 dosimeter. The VMAT plans have previously been used for (nontracking) liver SBRT with intratreatment tumor motion recorded by kilovoltage intrafraction monitoring (KIM). The motion stage reproduced the KIM-measured tumor motions in three dimensions (3D) while optical monitoring guided the MLC tracking. Linac parameters and the target position were streamed to an in-house developed software program (DoseTracker) that performed real-time 4D dose reconstructions and 3%/3 mm γ-evaluations of the reconstructed cumulative dose using a concurrently reconstructed planned dose without target motion as reference. Offline, the real-time reconstructed doses and γ-evaluations were validated against 4D dosimeter measurements performed during the experiments. RESULTS: In total, 181,120 dose reconstructions and 5,237 γ-evaluations were performed online and in real time with median computation times of 30 ms and 1.2 s, respectively. The mean (standard deviation) difference between reconstructed and measured doses was -1.2% (4.9%) for transient doses and -1.5% (3.9%) for cumulative doses. The root-mean-square deviation between reconstructed and measured motion-induced γ-fail rates was 2.0%-point. The mean (standard deviation) sensitivity and specificity of DoseTracker to predict γ-fail rates above a given threshold was 96.8% (3.5%) and 99.2% (0.4%), respectively, for clinically relevant thresholds between 1% and 30% γ-fail rate. CONCLUSIONS: Real-time delivery-specific QA during radiotherapy of moving targets was demonstrated for the first time. It allows supervision of treatment accuracy and action on treatment discrepancy within 2 s with high sensitivity and specificity.

12.
Med Phys ; 44(3): 798-809, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28079260

ABSTRACT

PURPOSE/OBJECTIVE: Couch and MLC tracking are two novel techniques to mitigate intrafractional tumor motion on a conventional linear accelerator, but both techniques still have residual dosimetric errors. Here, we first propose and experimentally validate a software tool to simulate couch and MLC tracking, and then use the simulator to study hybrid couch-MLC tracking for improved tracking performance. MATERIALS AND METHODS: The tracking simulator requires a treatment plan and a motion trajectory as input and simulates the delivered monitor units and motion of all accelerator parts as function of time. The simulator outputs accelerator log files synchronized with the target motion as well as the MLC exposure error, which is a simple dose error surrogate. A series of couch and MLC tracking experiments were used to determine appropriate parameters for the simulator dynamics and to validate the simulator by its ability to reproduce the experimental tracking accuracy. Three hybrid couch-MLC tracking strategies were investigated. All strategies divided the target motion in beam's eye view into motion perpendicular and parallel to the MLC leaves. In the hybrid strategies, couch tracking compensated for the following target motion components (in order of decreasing couch tracking contribution): (a) all perpendicular motion, (b) residual perpendicular motion less than half a leaf width, and (c) persistent residual perpendicular motion that was stable at a time scale of 1s. MLC tracking compensated for the remaining target motion. All tracking strategies were simulated with two prostate and two lung cancer single-arc VMAT plans using 695 prostate trajectories and 160 lung tumor trajectories. The tracking error was quantified as the MLC exposure error. The couch motion was quantified as the mean speed, acceleration, and jerk of the couch. RESULTS: The simulator reproduced the experimental gantry position with a mean (maximum) root-mean-square (rms) error of 0.07°(0.2°). The geometrical rms tracking error was reproduced with mean (maximum) absolute errors of 0.20 mm(0.23 mm) and 0.1 mm(0.23 mm) for MLC tracking parallel and perpendicular to the MLC leaves, and 0.40 mm(0.46 mm), 0.09 mm(0.25 mm), and 0.20 mm(0.46 mm) for couch tracking in the left-right, anterior-posterior, and cranio-caudal directions. The MLC exposure error of VMAT MLC tracking was reproduced with a mean absolute error of 5.6%. All hybrid tracking strategies reduced the couch motion relative to pure couch tracking and improved the tracking accuracy compared with pure MLC tracking. The mean MLC exposure error reduction relative to no tracking was 66.6% (couch tracking), 72.9% (hybrid (1)), 70.2% (2), 59.1% (3), and 55.6% (MLC tracking) for lung tumor motion and 76.5% (couch tracking), 76.1% (1), 74.3% (2), 72.3% (3), and 35.9% (MLC tracking) for prostate motion. For prostate motion, pure MLC tracking resulted in rather large MLC exposure errors that were more than halved with all hybrid tracking strategies. CONCLUSION: A couch and MLC tracking simulator was developed and experimentally validated against a series of tracking experiments. All hybrid couch-MLC tracking strategies improved MLC tracking. Two strategies also improved couch tracking of lung tumors. In particular, MLC tracking of prostate may be greatly improved by a modest degree of couch motion.


Subject(s)
Computer Simulation , Motion , Particle Accelerators , Radiation Equipment and Supplies , Radiotherapy Planning, Computer-Assisted/methods , Software , Humans , Lung Neoplasms/physiopathology , Lung Neoplasms/radiotherapy , Male , Movement , Prostatic Neoplasms/physiopathology , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods
13.
Med Phys ; 43(5): 2387, 2016 May.
Article in English | MEDLINE | ID: mdl-27147350

ABSTRACT

PURPOSE: Couch and MLC tracking are two promising methods for real-time motion compensation during radiation therapy. So far, couch and MLC tracking experiments have mainly been performed by different research groups, and no direct comparison of couch and MLC tracking of volumetric modulated arc therapy (VMAT) plans has been published. The Varian TrueBeam 2.0 accelerator includes a prototype tracking system with selectable couch or MLC compensation. This study provides a direct comparison of the two tracking types with an otherwise identical setup. METHODS: Several experiments were performed to characterize the geometric and dosimetric performance of electromagnetic guided couch and MLC tracking on a TrueBeam accelerator equipped with a Millennium MLC. The tracking system latency was determined without motion prediction as the time lag between sinusoidal target motion and the compensating motion of the couch or MLC as recorded by continuous MV portal imaging. The geometric and dosimetric tracking accuracies were measured in tracking experiments with motion phantoms that reproduced four prostate and four lung tumor trajectories. The geometric tracking error in beam's eye view was determined as the distance between an embedded gold marker and a circular MLC aperture in continuous MV images. The dosimetric tracking error was quantified as the measured 2%/2 mm gamma failure rate of a low and a high modulation VMAT plan delivered with the eight motion trajectories using a static dose distribution as reference. RESULTS: The MLC tracking latency was approximately 146 ms for all sinusoidal period lengths while the couch tracking latency increased from 187 to 246 ms with decreasing period length due to limitations in the couch acceleration. The mean root-mean-square geometric error was 0.80 mm (couch tracking), 0.52 mm (MLC tracking), and 2.75 mm (no tracking) parallel to the MLC leaves and 0.66 mm (couch), 1.14 mm (MLC), and 2.41 mm (no tracking) perpendicular to the leaves. The motion-induced gamma failure rate was in mean 0.1% (couch tracking), 8.1% (MLC tracking), and 30.4% (no tracking) for prostate motion and 2.9% (couch), 2.4% (MLC), and 41.2% (no tracking) for lung tumor motion. The residual tracking errors were mainly caused by inadequate adaptation to fast lung tumor motion for couch tracking and to prostate motion perpendicular to the MLC leaves for MLC tracking. CONCLUSIONS: Couch and MLC tracking markedly improved the geometric and dosimetric accuracies of VMAT delivery. However, the two tracking types have different strengths and weaknesses. While couch tracking can correct perfectly for slowly moving targets such as the prostate, MLC tracking may have considerably larger dose errors for persistent target shift perpendicular to the MLC leaves. Advantages of MLC tracking include faster dynamics with better adaptation to fast moving targets, the avoidance of moving the patient, and the potential to track target rotations and deformations.


Subject(s)
Motion , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Electromagnetic Phenomena , Humans , Lung Neoplasms/radiotherapy , Male , Models, Anatomic , Particle Accelerators/instrumentation , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Reproducibility of Results , Time Factors
14.
Radiother Oncol ; 119(1): 159-65, 2016 04.
Article in English | MEDLINE | ID: mdl-27016171

ABSTRACT

PURPOSE: A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. METHODS AND MATERIALS: Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. RESULTS: For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p<0.001). For all prostate the mean 2%/2mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p<0.001). The difference between the four systems was small with an average 2%/2mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. CONCLUSIONS: The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.


Subject(s)
Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Robotics/instrumentation , Computer Systems , Humans , Male , Movement , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
15.
Phys Med Biol ; 59(23): 7279-96, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25383729

ABSTRACT

Multileaf collimator (MLC) tracking is a promising and clinically emerging treatment modality for radiotherapy of mobile tumours. Still, new quality assurance (QA) methods are warranted to safely introduce MLC tracking in the clinic. The purpose of this study was to create and experimentally validate a simple model for fast motion-including dose error reconstruction applicable to intrafractional QA of MLC tracking treatments of moving targets.MLC tracking experiments were performed on a standard linear accelerator with prototype MLC tracking software guided by an electromagnetic transponder system. A three-axis motion stage reproduced eight representative tumour trajectories; four lung and four prostate. Low and high modulation 6 MV single-arc volumetric modulated arc therapy treatment plans were delivered for each trajectory with and without MLC tracking, as well as without motion for reference. Temporally resolved doses were measured during all treatments using a biplanar dosimeter. Offline, the dose delivered to each of 1069 diodes in the dosimeter was reconstructed with 500 ms temporal resolution by a motion-including pencil beam convolution algorithm developed in-house. The accuracy of the algorithm for reconstruction of dose and motion-induced dose errors throughout the tracking and non-tracking beam deliveries was quantified. Doses were reconstructed with a mean dose difference relative to the measurements of-0.5% (5.5% standard deviation) for cumulative dose. More importantly, the root-mean-square deviation between reconstructed and measured motion-induced 3%/3 mm γ failure rates (dose error) was 2.6%. The mean computation time for each calculation of dose and dose error was 295 ms. The motion-including dose reconstruction allows accurate temporal and spatial pinpointing of errors in absorbed dose and is adequately fast to be feasible for online use. An online implementation could allow treatment intervention in case of erroneous dose delivery in both tracking and non-tracking treatments.


Subject(s)
Algorithms , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Male , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/instrumentation
16.
Med Phys ; 40(11): 111723, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24320431

ABSTRACT

PURPOSE: The highly conformal doses delivered by volumetric modulated arc therapy (VMAT) may be compromised by intrafraction target motion. Although dynamic multileaf collimator (DMLC) tracking can mitigate the dosimetric impact of motion on the accumulated dose, residual errors still exist. The purpose of this study was to investigate the temporal evolution of dose errors throughout VMAT treatments delivered with and without DMLC tracking. METHODS: Tracking experiments were performed on a linear accelerator connected to prototype DMLC tracking software. A three-axis motion stage reproduced representative clinical trajectories of four lung tumors and four prostates. For each trajectory, two VMAT treatment plans (low and high modulation) were delivered with and without DMLC tracking as well as to a static phantom for reference. Dose distributions were measured continuously at 72 Hz using a dosimeter with biplanar diode arrays. During tracking, the MLC leaves were continuously refitted to the 3D target position measured by an electromagnetic transponder at 30 Hz. The dosimetric errors caused in the 32 motion experiments were quantified by a time-resolved 3%/3 mm γ-test. The erroneously exposed areas in treatment beam's eye view (BEV) caused by inadequate real-time MLC adaptation were calculated and compared with the time-resolved γ failure rates. RESULTS: The transient γ failure rate was on average 16.8% without tracking and 5.3% with tracking. The γ failure rate correlated well with the erroneously exposed areas in BEV (mean of Pearson r = 0.83, p < 0.001). For the final accumulated doses, the mean γ failure rate was 17.9% without tracking and 1.0% with tracking. With tracking the transient dose errors tended to cancel out resulting in the low mean γ failure rate for the accumulated doses. CONCLUSIONS: Time-resolved measurements allow pinpointing of transient errors in dose during VMAT delivery as well as monitoring of erroneous dose evolution in key target positions. The erroneously exposed area in BEV was shown to be a good indicator of errors in the dose distribution during treatment delivery.


Subject(s)
Particle Accelerators , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Calibration , Equipment Design , Humans , Linear Models , Lung/radiation effects , Lung Neoplasms/radiotherapy , Male , Medical Errors/prevention & control , Motion , Phantoms, Imaging , Prostate/radiation effects , Prostatic Neoplasms/radiotherapy , Radiation Dosage , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results , Software
17.
Acta Oncol ; 52(7): 1497-503, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23984811

ABSTRACT

BACKGROUND: Organ motion during treatment delivery in radiotherapy (RT) may lead to deterioration of the planned dose, but can be mitigated by dynamic multi-leaf collimator (DMLC) tracking. The purpose of this study was to implement and experimentally validate a method for time-resolved motion including dose reconstruction for volumetric modulated arc therapy (VMAT) treatments delivered with and without DMLC tracking. MATERIAL AND METHODS: Tracking experiments were carried out on a linear accelerator (Trilogy, Varian) with a prototype DMLC tracking system. A motion stage carrying a biplanar dosimeter phantom (Delta4PT, Scandidos) reproduced eight representative clinical tumor trajectories (four lung, four prostate). For each trajectory, two single-arc 6 MV VMAT treatments with low and high modulation were delivered to the moving phantom with and without DMLC tracking. An existing in-house developed program that adds target motion to treatment plans was extended with the ability to split an arc plan into any number of sub-arcs, allowing the calculated dose for different parts of the treatment to be examined individually. For each VMAT sub-arc, reconstructed and measured doses were compared using dose differences and 3%/3 mm γ-tests. RESULTS: For VMAT sub-arcs the reconstructed dose distributions had a mean root-mean-square (rms) dose difference of 2.1% and mean γ failure rate of 2.0% when compared with the measured doses. For final accumulated doses the mean rms dose difference was 1.6% and the γ failure rate was 0.7%. CONCLUSION: The time-resolved motion including dose reconstruction was experimentally validated for complex tracking and non-tracking treatments with patient-measured tumor motion trajectories. The reconstructed dose will be of high value for evaluation of treatment plan robustness facing organ motion and adaptive RT.


Subject(s)
Lung Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Humans , Image Processing, Computer-Assisted , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Motion , Particle Accelerators , Phantoms, Imaging , Prognosis , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Radiographic Image Enhancement , Radiotherapy Dosage
18.
Acta Oncol ; 52(7): 1445-50, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23957684

ABSTRACT

BACKGROUND: The increasing complexity of radiotherapy (RT) has motivated research into three-dimensional (3D) dosimetry. In this study we investigate the use of 3D dosimetry with polymerizing gels and optical computed tomography (optical CT) as a verification tool for complex RT: dose painting and target tracking. MATERIALS AND METHODS: For the dose painting studies, two dosimeters were irradiated with a seven-field intensity modulated radiotherapy (IMRT) plan with and without dose prescription based on a hypoxia image dataset of a head and neck patient. In the tracking experiments, two dosimeters were irradiated with a volumetric modulated arc therapy (VMAT) plan with and without clinically measured prostate motion and a third with both motion and target tracking. To assess the performance, 3D gamma analyses were performed between measured and calculated stationary dose distributions. RESULTS: Gamma pass-rates of 95.3% and 97.3% were achieved for the standard and dose-painted IMRT plans. Gamma pass-rates of 91.4% and 54.4% were obtained for the stationary and moving dosimeter, respectively, while tracking increased the pass-rate for the moving dosimeter to 90.4%. CONCLUSIONS: This study has shown that the 3D dosimetry system can reproduce and thus verify complex dose distributions, also when influenced by motion.


Subject(s)
Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Tomography, X-Ray Computed , Humans , Male , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated
19.
Acta Oncol ; 50(6): 944-51, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21767195

ABSTRACT

BACKGROUND: Tumor motion during radiotherapy delivery can substantially deteriorate the target dose distribution. A promising method to overcome this problem is dynamic multi-leaf collimator (DMLC) tracking. The purpose of this phantom study was to integrate a wired electromagnetic (EM) transponder localization system with DMLC tracking and to investigate the geometric accuracy of the integrated system. MATERIAL AND METHODS: DMLC tracking experiments were performed on a Trilogy accelerator with a prototype DMLC tracking system. A wired implantable EM transponder was mounted on a motion stage with a 3 mm tungsten sphere used for target visualization in continuous portal images. The three dimensional (3D) transponder position signal was used for DMLC aperture adaption. The motion stage was programmed to reproduce eight representative patient-measured trajectories for prostate and for lung tumors. The tracking system latency was determined and prediction was used for the lung tumor trajectories to account for the latency. For each trajectory, three conformal fields with a 10 cm circular MLC aperture and 72 s treatment duration were delivered: (1) a 358° arc field; (2) an anterior static field; and (3) a lateral static field. The tracking error was measured as the difference between the marker position and the MLC aperture in the portal images. RESULTS: The tracking system latency was 140 ms. The mean root-mean-square (rms) of the 3D transponder localization error was 0.53/0.54 mm for prostate/lung tumor trajectories. The mean rms of the two dimensional (2D) tracking error was 0.69 mm (prostate) and 0.98 mm (lung tumors) with tracking and 3.4 mm (prostate) and 5.3 mm (lung tumors) without tracking. CONCLUSIONS: DMLC tracking was integrated with a wired EM transponder localization system and investigated for arc and static field delivery. The system provides sub-mm geometrical errors for most trajectories.


Subject(s)
Electromagnetic Phenomena , Lung Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Prosthesis Implantation , Radiometry/instrumentation , Radiotherapy, Intensity-Modulated , Respiration , Algorithms , Dose-Response Relationship, Radiation , Equipment Design , Humans , Lung Neoplasms/pathology , Male , Motion , Particle Accelerators , Phantoms, Imaging , Prostatic Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL