Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38530540

ABSTRACT

Staphylococcus aureus is a major cause of hospital-associated infections worldwide. The organism's ability to form biofilms has led to resistance against current treatment options such as beta-lactams, glycopeptides, and daptomycin. The ArlRS two-component system is a crucial regulatory system necessary for S. aureus autolysis, biofilm formation, capsule synthesis, and virulence. This study aims to investigate the role of the arlR deletion mutant in the detection and activation of S. aureus. We created an arlR deleted mutant and complementary strains and characterized their impact on the strains using partial growth measurement. The quantitative real-time PCR was performed to determine the expression of icaA, and the microscopic images of adherent cells were captured at the optical density of 600 to determine the primary bacterial adhesion. The biofilm formation assay was utilized to investigate the number of adherent cells using crystal violet staining. Eventually, the Triton X-100 autolysis assay was used to determine the influence of arlR on the cell autolytic activities. Our findings indicate that the deletion of arlR reduced the transcriptional expression of icaA but not icaR in the ica operon, leading to decrease in polysaccharide intercellular adhesin (PIA) synthesis. Compared to the wild-type and the complementary mutants, the arlR mutant exhibited decreased in biofilm production but increased autolysis. It concluded that the S. aureus response regulatory ArlR influences biofilm formation, agglutination, and autolysis. This work has significantly expanded our knowledge of the ArlRS two-component regulatory system and could aid in the development of novel antimicrobial strategies against S. aureus.

2.
Front Microbiol ; 15: 1293990, 2024.
Article in English | MEDLINE | ID: mdl-38476937

ABSTRACT

Introduction: Acinetobacter baumannii PmrAB is a crucial two-component regulatory system (TCS) that plays a vital role in conferring resistance to polymyxin. PmrA, a response regulator belonging to the OmpR/PhoB family, is composed of a C-terminal DNA-binding effector domain and an N-terminal receiver domain. The receiver domain can be phosphorylated by PmrB, a transmembrane sensor histidine kinase that interacts with PmrA. Once phosphorylated, PmrA undergoes a conformational change, resulting in the formation of a symmetric dimer in the receiver domain. This conformational change facilitates the recognition of promoter DNA by the DNA-binding domain of PmrA, leading to the activation of adaptive responses. Methods: X-ray crystallography was carried out to solve the structure of PmrA receiver domain. Electrophoretic mobility shift assay and Isothermal titration calorimetry were recruited to validate the interaction between the recombinant PmrA protein and target DNA. Field-emission scanning electron microscopy (FE-SEM) was employed to characterize the surface morphology of A. baumannii in both the PmrA knockout and mutation strains. Results: The receiver domain of PmrA follows the canonical α5ß5 response regulator assembly, which undergoes dimerization upon phosphorylation and activation. Beryllium trifluoride is utilized as an aspartate phosphorylation mimic in this process. Mutations involved in phosphorylation and dimerization significantly affected the expression of downstream pmrC and naxD genes. This impact resulted in an enhanced cell surface smoothness with fewer modifications, ultimately contributing to a decrease in colistin (polymyxin E) and polymyxin B resistance. Additionally, a conservative direct-repeat DNA PmrA binding sequence TTTAAGNNNNNTTTAAG was identified at the promoter region of the pmrC and naxD gene. These findings provide structural insights into the PmrA receiver domain and reveal the mechanism of polymyxin resistance, suggesting that PmrA could be a potential drug target to reverse polymyxin resistance in Acinetobacter baumannii.

3.
J Mater Chem B ; 12(6): 1636-1651, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38270595

ABSTRACT

The delivery of nanoparticles (NPs) to tumors remains challenging despite significant advancements in drug delivery technologies. Addressing this issue requires the establishment of quantitative and reliable criteria to evaluate the cellular absorption of NPs. The mechanical characteristics of NPs and their interaction with cells play a crucial role in cellular drug delivery by influencing cellular internalization. In particular, NPs' stiffness has emerged as a key factor affecting cellular uptake and viability. In this study, we synthesized ZnxFe3-xO4 NPs with varying Zn doping concentrations and conducted an extensive measurement process to investigate the impact of NP stiffness on cellular uptake and the viability of cancerous cells. Initially, the stiffness of the NPs was measured using two methods: single-molecule force spectrometry of atomic force microscopy (SMFS-AFM) and cation distribution as chemical structure analysis. The influence of NP stiffness on intracellular behavior was examined by assessing cellular uptake and viability at different time points during the incubation period. The results obtained from both stiffness measurement methods exhibited consistent trends. NPs with higher stiffness exhibited enhanced cellular uptake but exhibited reduced cellular viability compared to the lower-stiffness NPs. Our findings provide valuable insights into the influence of Zn doping concentration on the mechanical properties of ZnxFe3-xO4 NPs and their consequential impacts on cellular internalization. This study contributes to an improved comprehension of the mechanisms underlying cellular uptake and facilitates advancements in the field of drug transport, thereby enhancing the efficiency of NP-based drug delivery.


Subject(s)
Nanoparticles , Neoplasms , Humans , MCF-7 Cells , Drug Delivery Systems/methods , Nanoparticles/chemistry , Biological Transport , Zinc
4.
Funct Integr Genomics ; 23(3): 265, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37541970

ABSTRACT

Wheat (Triticum aestivum L.) is an important cereal crop that is grown all over the world for food and industrial purposes. Wheat is essential to the human diet due to its rich content of necessary amino acids, minerals, vitamins, and calories. Various wheat breeding techniques have been utilized to improve its quality, productivity, and resistance to biotic and abiotic stress impairing production. However, these techniques are expensive, demanding, and time-consuming. Additionally, these techniques need multiple generations to provide the desired results, and the improved traits could be lost over time. To overcome these challenges, researchers have developed various genome editing tools to improve the quality and quantity of cereal crops, including wheat. Genome editing technologies evolve quickly. Nowadays, single or multiple mutations can be enabled and targeted at specific loci in the plant genome, allowing controlled removal of undesirable features or insertion of advantageous ones. Clustered, regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) is a powerful genome editing tool that can be effectively used for precise genome editing of wheat and other crops. This review aims to provide a comprehensive understanding of this technology's potential applications to enhance wheat's quality and productivity. It will first explore the function of CRISPR/Cas9 in preserving the adaptive immunity of prokaryotic organisms, followed by a discussion of its current applications in wheat breeding.


Subject(s)
Gene Editing , Triticum , Humans , Gene Editing/methods , Triticum/genetics , CRISPR-Cas Systems , Plants, Genetically Modified/genetics , Plant Breeding/methods , Genome, Plant , Crops, Agricultural/genetics , Edible Grain/genetics
5.
J Multidiscip Healthc ; 16: 707-716, 2023.
Article in English | MEDLINE | ID: mdl-36938485

ABSTRACT

Background: Following the coronavirus disease (COVID-19) declaration as a pandemic, Yemen has started applying preventive measures to prevent its spread. This study aims to identify the perception regarding the nature of the COVID-19 disease, susceptibility to severe forms of the disease, and its relationship to seasonal influenza among the population of Yemen. Methods: This was a cross-sectional study of the public in Yemen. The relationship between participants' sociodemographic factors and their responses was assessed by the chi-square test. Results: A total of 748 participants agreed to participate in the study. Regarding the nature of the diseases, nearly half of the participants (48.8%, n=352) believed that COVID-19 is a naturally occurring human virus that is a serious and fatal disease (61.2%, n=448). The majority (74.9%; n=518) did not agree that bacteria cause COVID-19. More than half of the participants (57.5%, n=423) believed this disease is transmitted to humans through a host animal. Regarding the vulnerable groups to develop severe COVID-19 infection, most of the participants pointed out that the elderly (94.3%, n=705), people with chronic diseases (89.9%, n=669), and pregnant women (53%, n=365) were more susceptible to severe diseases. Regarding symptoms, the majority (61.9%, n=458) of the participants agreed that the symptoms of COVID-19 are similar to those of seasonal influenza. Additionally, the majority (81.9%, n=579) agreed that some individuals develop more severe symptoms than seasonal influenza, particularly those with chronic illness. Gender, age, and education were found to be associated with participants' perceptions regarding the nature of the virus and susceptibility to severe disease. Conclusion: Participants demonstrate a good understanding of the nature and susceptibility to complications associated with COVID-19 disease and its relationship to influenza. However, the respondents with a lower level of education might require additional educational campaigns to improve their awareness of the disease.

6.
Chem Biol Interact ; 370: 110331, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36581201

ABSTRACT

Cholestasis is primarily caused by bile acid homeostasis dysregulation, resulting in retention, aggregation, and accumulation of the toxic cholate in the hepatocytes. Existing therapies for cholestasis are limited, demanding the urgent development of novel drugs. As a result, targeting FXR specifically promises a unique treatment strategy for cholestasis. The current study aims to evaluate the influence of 7, 8-dihydroxy-4-methyl coumarin (DMC) against alpha-naphthyl isothiocyanate (ANIT)-induced liver injury in mice. The "Computer-Aided Drug Design" (CADD) and molecular docking study anticipated that DMC would proficiently bind and activate the FXR. Accordingly, the hepatoprotective activity of DMC against ANIT-induced hepatotoxicity and cholestasis was investigated in ANIT-treated HepaRG cells and the ANIT-induced cholestatic mouse model. Outcomes indicated the protective effects of DMC against ANIT toxicity in HepaRG cells after 24 h of intervention and animals after seven days of treatment. DMC partially blocks ANIT-induced increases in serum markers of hepatocellular injury, liver and gall bladder enlargement, and hepatic necrosis. Western blotting revealed that DMC alleviates ANIT-induced hepatotoxicity and cholestasis via activating the FXR receptor and regulating CYP7A1, the enzyme responsible for bile acid synthesis. DMC exhibited protective activity against cholestasis through activating FXR, suggesting it might be a promising strategy for preventing and treating cholestatic liver disease.


Subject(s)
Chemical and Drug Induced Liver Injury , Cholestasis , Liver Diseases , Mice , Animals , Molecular Docking Simulation , Receptors, Cytoplasmic and Nuclear/metabolism , 1-Naphthylisothiocyanate/toxicity , 1-Naphthylisothiocyanate/metabolism , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/metabolism , Liver/metabolism , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Coumarins/pharmacology , Coumarins/therapeutic use
7.
Front Mol Biosci ; 9: 1102735, 2022.
Article in English | MEDLINE | ID: mdl-36582202

ABSTRACT

Background and Objective: One of the most recent forms of programmed cell death, ferroptosis, is crucial in tumorigenesis. Ferroptosis is characterized by iron-dependent oxidative destruction of cellular membranes following the antioxidant system's failure. However, it is unknown whether ferroptosis-related genes (FRGs) are associated with colon adenocarcinoma (COAD) metastasis, immune cell infiltration, and oxidative stress in COAD. The current study concentrated on FRGs expression in colon cancer metastasis, their relationship to immune cell infiltration (ICI), and potential pathological pathways in COAD. Methods and Results: Clinical information and mRNA expression patterns for patients with COAD metastasis were obtained from the public TCGA database. Patients with low mRNA levels showed good overall survival than patients with high mRNA levels. The genomic-clinicopathologic nomogram was subsequently created by combining risk score and clinicopathological features. Absolute Shrinkage and Selection Operator have shown a 4 gene signature that can stratify cancer patients into high-risk versus low-risk. These four FRGs were found to be significantly linked to the overall survival of COAD patients and predicted high risk score. Next, age, stage, and PTNM were combined in univariate and multivariate cox regression models to perform a filtering procedure. The receiver operating characteristic (ROC) and calibration curves indicated that constructed signature model exhibited high prediction accuracy and clinical relevance in COAD. ARID3A showed a strong negative correlation with a wide range of immune tumour-infiltrating cells in COAD microenvironment. According to the single sample gene set enrichment analysis (ssGSEA) results, FRGs are involved in variety of pathological pathways including PI3K-AKT-mTOR pathway, reactive oxygen species (ROS) pathway, response to hypoxia pathway, and other inflammation related pathways. Moreover, dysregulation of FRGs in COAD patients showed a significance correlation with wide range of miRNAs and transcription factors (TFs). Conclusion: We identified new diagnostic biomarkers and established prognostic models for ferroptosis related programmed cell death in COAD metastasis. FRGs may improve tumor cell survival by activating the TGFB pathway, which can stimulate ROS production, accelerates ECM breakdown, and promote tumor progression and invasion. Genes implicated in ferroptosis, as revealed by the Kaplan Meier and a genomic-clinicopathologic nomogram, are potential therapeutic targets and prognosis indications for metastasis COAD patients.

8.
J Pharm Biomed Anal ; 212: 114666, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35183887

ABSTRACT

Among the endocrine and metabolic disorders, type-2 diabetes mellitus (T2DM) and benign prostatic hyperplasia (BPH) are common progressive diseases related to aging. Metformin and tamsulosin as the first-choice drug for patients with T2DM and BPH, respectively, are often co-administered to male patients with T2DM and BPH. However, whether concomitantly administering metformin and tamsulosin leads to drug-drug interactions (DDIs) remains unclear. This study aimed to evaluate the effect of tamsulosin on the pharmacokinetics of metformin and explore the relevant underlying mechanism. The plasma, urine, and tissue concentrations of metformin were analyzed using HPLC, and metformin cell uptake was analyzed using LC-MS/MS. In addition, western blotting was used to investigate the expression of Oct1, Oct2, and Mate1. As demonstrated by comparison with metformin alone, tamsulosin significantly increased the area under concentration-time curves (AUC0-t), the maximum plasma concentration (Cmax) and the decreased 24 h cumulative urinary excretion of metformin after single or multiple-dose administration in rats, as well as increased the kidney tissue concentration of metformin after multiple-dose. In addition, tamsulosin treatment significantly inhibited the expression of Mate1 and Oct2 in rat kidneys, but Oct1 and Mate1 did not show a significant difference in the liver. Consistently, tamsulosin inhibited OCT2 and MATE1 expressions and decreased metformin uptake in HEK293 cells. Notably, serum LCA level in the co-administration group was increased by 34% and 39% after multiple-dose (7 and 14 consecutive days, respectively) administration compared to the metformin alone group. Altogether, our data suggest that tamsulosin could increase systemic exposure and reduce excretion of metformin via inhibiting Oct2 and Mate1-mediated transport cooperatively.


Subject(s)
Metformin , Animals , Chromatography, Liquid , HEK293 Cells , Humans , Kidney/metabolism , Male , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/pharmacology , Organic Cation Transporter 2/metabolism , Rats , Tamsulosin/pharmacology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL