Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Semin Immunol ; 38: 54-62, 2018 08.
Article in English | MEDLINE | ID: mdl-29631809

ABSTRACT

It has become increasingly apparent that the complement system, being an ancient defense mechanism, is not operative only in the extracellular milieu but also intracellularly. In addition to the known synthetic machinery in the liver and by macrophages, many other cell types, including lymphocytes, adipocytes and epithelial cells produce selected complement components. Activation of e.g. C3 and C5 inside cells may have multiple effects ranging from direct antimicrobial defense to cell differentiation and possible influence on metabolism. Intracellular activation of C3 and C5 in T cells is involved in the maintenance of immunological tolerance and promotes differentiation of T helper cells into Th1-type cells that activate cell-mediated immune responses. Adipocytes are unique in producing many complement sensor proteins (like C1q) and Factor D (adipsin), the key enzyme in promoting alternative pathway amplification. The effects of complement activation products are mediated by intracellular and cell membrane receptors, like C3aR, C5aR1, C5aR2 and the complement regulator MCP/CD46, often jointly with other receptors like the T cell receptor, Toll-like receptors and those of the inflammasomes. These recent observations link complement activation to cellular metabolic processes, intracellular defense reactions and to diverse adaptive immune responses. The complement components may thus be viewed as intracellular alarm molecules involved in the cellular danger response.


Subject(s)
Complement Activation/immunology , Complement System Proteins/immunology , Intracellular Space/immunology , Signal Transduction/immunology , Animals , Cell Differentiation/immunology , Complement System Proteins/metabolism , Humans , Immune Tolerance/immunology , Intracellular Space/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism
2.
Mol Immunol ; 89: 100-110, 2017 09.
Article in English | MEDLINE | ID: mdl-28668353

ABSTRACT

It is becoming increasingly clear that the connections between our immune system and the microbiota colonizing us have a tremendous impact on human health. A number of innate molecular defence mechanisms cooperate to selectively target unwanted microorganisms at the mucosal surfaces. Amongst others these include the complement system, IgA and the SALSA molecule. The salivary scavenger and agglutinin (SALSA), also known as deleted in malignant brain tumors 1 (DMBT1), salivary agglutinin (SAG) or gp340 is a multifunctional molecule with important functions in innate immunity, inflammation and epithelial homeostasis. The SALSA protein is expressed at most mucosal surfaces, where it is one of the most abundant proteins. In the fetal meconium and infant intestine it may constitute even up to 10% of the total protein amount. SALSA is found either directly associated with the epithelial surface or secreted into the lining fluids. In the fluid-phase SALSA interacts with a number of bacterial and viral organisms, as well as with endogenous ligands, including IgA, lactoferrin, surfactant proteins and complement components. While complement has been shown to impact the mucosal environment, this remains an area of limited research. The multiple interactions of the SALSA molecule provide a scaffold, where this potent defence system may engage in cooperative microbial clearance together with corresponding mucosal host ligands. With its high abundance, and multiple effects on both host and microbes, the SALSA molecule is a key player in maintaining the immunological balance at the mucosal surfaces. This is further supported by observations linking the expression of different SALSA isoforms to the development of chronic inflammatory conditions, such as Crohn's disease and ulcerative colitis. This review describes the latest advances in understanding functions of SALSA and its different isoforms. Recently recognized functions are related to complement activation and regulation, endothelial development and epithelial homeostasis. In addition, we suggest mechanisms how SALSA regulates inflammation at the mucosal surfaces.


Subject(s)
Complement Activation/immunology , Immunity, Innate/immunology , Immunity, Mucosal/immunology , Receptors, Cell Surface/immunology , Bacteria/immunology , Bacteria/metabolism , Calcium-Binding Proteins , DNA-Binding Proteins , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/virology , Models, Immunological , Protein Binding/immunology , Receptors, Cell Surface/metabolism , Tumor Suppressor Proteins , Viruses/immunology , Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL