Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Virusdisease ; 28(4): 408-415, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29291232

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein (NP) is the immunodominant region of PRRSV viral proteins. Non-structural protein 2 (Nsp2) and its hypervariable region play an essential role in the differential diagnosis of PRRSV. Western blot and immunofluorescence assay (IFA) analyses found that 2 out of 18 monoclonal antibodies (MAbs) recognized the NP and that 5 of 11 MAbs recognized Nsp2-120aa. IFA data demonstrated that 2 MAbs raised against the NP have a positive reaction to PRRSV; either HP-PRRSV, classic PRRSV or the vaccine strain at 1:100 dilution. Two MAbs raise against Nsp2-120aa also react positively with the classic PRRSV nor HP-PRRSV, but not with the PRRSV vaccine strain TJM-F92. Epitope mapping using truncated proteins identified a novel Nsp2-120aa epitope. In addition, we show that MAb BR/PNsp2-2A20 recognizes a 20 amino acid peptide (707) GRFEFLPKMILETPPPHPCG (727) of Nsp2. Based on our findings, we propose that MAb BR/PNsp2-2A20, raised against Nsp2-120aa of PRRSV, as a candidate specific diagnostic MAb for differentiation of the PRRSV virulent strains infected pig from vaccine strain TJM-F92 inoculated ones. The MAbs developed here have potential for use in diagnostic and research tools, including immunofluorescence assay, enzyme-linked immunosorbent assay and Western blotting.

2.
Infect Genet Evol ; 33: 219-26, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25958135

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease affecting swine worldwide. In this study, a total of 385 samples were collected from Shandong pig farms during 2013 and 2014, when pigs were not inoculated with any vaccine. Results indicated that, out of 385 samples, 47 (12.21%) were PRRSV-RNA-positive. The gene sequence analysis of 12 ORF5, 12 ORF7, and 8 Nsp2 of these samples was used to determine the molecular epidemiology of PRRSV in different parts of China's Shandong Province. The phylogenetic tree based on these 3 genes indicated that the Chinese PRRSV strains could be divided into five subgroups and two large groups. The 8 study strains were clustered into subgroup IV, another 4 strains into subgroup I. The first 8 strains shared considerable homology with VR-2332 in ORF5 (96-97.5%), the other 4 strains shared considerable homology with JXA1 (94-98%). Phylogenetic tree of GP5 showed that the eight isolates formed a tightly novel clustered branch, subgroup V, which resembled but differed from isolate VR-2332. When examined using Nsp2 alone, the first 8 strains showed considerable homology with a U.S. vaccine strain, Ingelvac MLV (89.6-98.4%). One novel pattern of deletion was observed in Nsp2. The genetic diversity of genotype 2 PRRSV tended to vary in the field. The emergence of novel variants will probably be the next significant branch of PRRSV study.


Subject(s)
Gene Deletion , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Animals , China/epidemiology , Genotype , History, 21st Century , Molecular Sequence Data , Mutation , Open Reading Frames/genetics , Phylogeny , Porcine Reproductive and Respiratory Syndrome/history , Porcine respiratory and reproductive syndrome virus/classification , Porcine respiratory and reproductive syndrome virus/isolation & purification , Sequence Alignment , Sequence Analysis, DNA , Swine
3.
BMC Vet Res ; 10: 128, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24916952

ABSTRACT

BACKGROUND: The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines, have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV. RESULTS: To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines, pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3 and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN-γ of the experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05). The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group. CONCLUSIONS: Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and reactivity. More importantly, better PRRSV-specific neutralizing antibody titers and cell-mediated immune responses were observed in mice immunized with the DNA vaccine co-expressing GP3 and GP5 proteins than in mice immunized with a DNA vaccine expressing either protein singly. The results of this study demonstrated that co-immunization with GP3 and GP5 produced a better immune response in mice.


Subject(s)
Antibodies, Viral/blood , Porcine respiratory and reproductive syndrome virus/metabolism , Viral Proteins/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing/blood , Cell Proliferation , Chitosan , Genotype , Interferon-gamma/blood , Interleukin-2/blood , Mice , Mice, Inbred BALB C , Nanoparticles , Porcine respiratory and reproductive syndrome virus/immunology , Quillaja Saponins , T-Lymphocytes/physiology , Vaccines, DNA/immunology , Viral Proteins/metabolism
4.
Vector Borne Zoonotic Dis ; 13(1): 41-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23199264

ABSTRACT

The residential regions of Yunnan province, canton of Jing Hong, in China were surveyed for Japanese encephalitis virus (JEV) infection in mosquito and swine vectors to determine the frequency of JEV-carrying zoonotic vectors in 2009-2010. A total of 21,500 mosquitoes were collected and divided by species, and brain tissue was collected from 108 stillborn piglets. The infection rates for the different JEV species were 13.2% for Culex tritaeniorhynchus, 2.7% for Anopheles sinensis, 0.7% for Armigeres subalbatus, and 18.5% for stillborn piglets. The complete genomes of two JEV samples that were collected in different seasons and different regions, Yunnan 0901 and Yunnan 0902, were sequenced from a pool of Culex mosquitoes and stillborn piglets that had been collected randomly from several piggeries. Multiple sequence alignment with 24 fully-sequenced genes and 93 complete sequences of the JEV-encoded E gene revealed nucleotide homologies ranging from 97.2-99.6% and 94.5-99.7% in mosquitoes and piglets, respectively, and deduced amino acid homologies ranging from 97.4-98.1% and 96.0-98.2%, respectively. Phylogenetic analyses of the Yunnan 0901 and Yunnan 0902 strains' full-length genomes and E gene sequences indicated that these strains are most closely related to six Chinese SA14-derived viruses, and distantly related to the Australian FU, vellore P20778, and Japanese Ishikawa strains, and the previously isolated YN86-B8639 strains. The phylogenetic relationships based on the full-length genome were similar to those found for the E gene, indicating that phylogenetic analysis of the E gene will be a useful approach for genotyping of JEV, but not to better understand the potential changes in the biological characteristics and genetic relationship of JEV isolates.


Subject(s)
Culicidae/virology , Encephalitis Virus, Japanese/isolation & purification , Encephalitis, Japanese/virology , Insect Vectors/virology , Swine Diseases/virology , Amino Acid Sequence , Amino Acid Substitution , Animals , Animals, Suckling , Base Sequence , China/epidemiology , Disease Vectors , Encephalitis Virus, Japanese/classification , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/transmission , Genome, Viral/genetics , Genotype , Mice , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , Sequence Alignment , Sequence Analysis, DNA , Stillbirth , Swine , Swine Diseases/epidemiology , Zoonoses
5.
Vector Borne Zoonotic Dis ; 12(12): 1042-52, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23176446

ABSTRACT

Japanese encephalitis (JE) can infect many agriculturally important animals and humans, and has a high incidence in Asia. One of the natural hosts of the mosquito-borne JE virus (JEV) is domestic pigs, which act as amplifier hosts. Porcine infection results in fatal encephalitis, abortion, and stillbirth in pregnant sows, and hypospermia in boars. In this study, a rapid JEV detection method for swine and mosquitoes was developed based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) targeting the nucleocapsid (E) genes of JEV genotype I (lineage K94PO5), and genotype III (lineage SA14-14-2). Fifty-six swine blood samples and 20,000 mosquitoes were used to evaluate the method, compared to conventional RT-polymerase chain reaction (PCR) and real-time RT-PCR. RT-LAMP had detection limits of 2.57 and 2.34 copies/µL for JEV I and III, respectively. Assay sensitivity was similar to real-time RT-PCR, but was 10-fold higher than conventional RT-PCR. Assay specificity was high, showing no cross-reactivity to other flaviviruses. The results of virus isolation and identification of swine blood samples and mosquito samples were fully consistent with RT-LAMP. Finally, the JEV RT-LAMP assay was simpler and less time consuming than conventional RT-PCR or real-time RT-PCR, since the amplification step could be completed in a single tube within 50 min at 63°C. In conclusion, the newly-developed RT-LAMP assay is an accurate and convenient method for rapid and sensitive diagnosis of JEV in swine and mosquitoes, and may prove to be a practical molecular tool for surveillance and epidemiological investigations.


Subject(s)
Culicidae/virology , Encephalitis Virus, Japanese/isolation & purification , Encephalitis, Japanese/veterinary , Insect Vectors/virology , Nucleocapsid Proteins/genetics , Swine Diseases/diagnosis , Animals , DNA Primers/genetics , Disease Reservoirs , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/diagnosis , Encephalitis, Japanese/epidemiology , Female , Humans , Limit of Detection , Pregnancy , RNA, Viral/blood , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription/genetics , Sensitivity and Specificity , Swine , Swine Diseases/epidemiology , Swine Diseases/virology , Time Factors , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL