Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 42(1): 52-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37037903

ABSTRACT

Intrinsically disordered regions (IDRs) in DNA-associated proteins are known to influence gene regulation, but their distribution and cooperative functions in genome-wide regulatory programs remain poorly understood. Here we describe DisP-seq (disordered protein precipitation followed by DNA sequencing), an antibody-independent chemical precipitation assay that can simultaneously map endogenous DNA-associated disordered proteins genome-wide through a combination of biotinylated isoxazole precipitation and next-generation sequencing. DisP-seq profiles are composed of thousands of peaks that are associated with diverse chromatin states, are enriched for disordered transcription factors (TFs) and are often arranged in large lineage-specific clusters with high local concentrations of disordered proteins and different combinations of histone modifications linked to regulatory potential. We use DisP-seq to analyze cancer cells and reveal how disordered protein-associated islands enable IDR-dependent mechanisms that control the binding and function of disordered TFs, including oncogene-dependent sequestration of TFs through long-range interactions and the reactivation of differentiation pathways upon loss of oncogenic stimuli in Ewing sarcoma.


Subject(s)
Chromatin , DNA , Sequence Analysis, DNA
2.
Cell Genom ; 2(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35967079

ABSTRACT

Repeat elements can be dysregulated at a genome-wide scale in human diseases. For example, in Ewing sarcoma, hundreds of inert GGAA repeats can be converted into active enhancers when bound by EWS-FLI1. Here we show that fusions between EWS and GGAA-repeat-targeted engineered zinc finger arrays (ZFAs) can function at least as efficiently as EWS-FLI1 for converting hundreds of GGAA repeats into active enhancers in a Ewing sarcoma precursor cell model. Furthermore, a fusion of a KRAB domain to a ZFA can silence GGAA microsatellite enhancers genome wide in Ewing sarcoma cells, thereby reducing expression of EWS-FLI1-activated genes. Remarkably, this KRAB-ZFA fusion showed selective toxicity against Ewing sarcoma cells compared with non-Ewing cancer cells, consistent with its Ewing sarcoma-specific impact on the transcriptome. These findings demonstrate the value of ZFAs for functional annotation of repeats and illustrate how aberrant microsatellite activities might be regulated for potential therapeutic applications.

3.
Nat Commun ; 13(1): 2267, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477713

ABSTRACT

Oncogenic fusion proteins generated by chromosomal translocations play major roles in cancer. Among them, fusions between EWSR1 and transcription factors generate oncogenes with powerful chromatin regulatory activities, capable of establishing complex gene expression programs in permissive precursor cells. Here we define the epigenetic and 3D connectivity landscape of Clear Cell Sarcoma, an aggressive cancer driven by the EWSR1-ATF1 fusion gene. We find that EWSR1-ATF1 displays a distinct DNA binding pattern that requires the EWSR1 domain and promotes ATF1 retargeting to new distal sites, leading to chromatin activation and the establishment of a 3D network that controls oncogenic and differentiation signatures observed in primary CCS tumors. Conversely, EWSR1-ATF1 depletion results in a marked reconfiguration of 3D connectivity, including the emergence of regulatory circuits that promote neural crest-related developmental programs. Taken together, our study elucidates the epigenetic mechanisms utilized by EWSR1-ATF1 to establish regulatory networks in CCS, and points to precursor cells in the neural crest lineage as candidate cells of origin for these tumors.


Subject(s)
Sarcoma, Clear Cell , Soft Tissue Neoplasms , Carcinogenesis/genetics , Chromatin/genetics , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogenes , RNA-Binding Protein EWS/genetics , Sarcoma, Clear Cell/genetics , Sarcoma, Clear Cell/pathology , Soft Tissue Neoplasms/genetics
4.
Cell Stem Cell ; 29(1): 116-130.e7, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995493

ABSTRACT

Down syndrome (DS) is a genetic disorder driven by the triplication of chromosome 21 (T21) and characterized by a wide range of neurodevelopmental and physical disabilities. Transcriptomic analysis of tissue samples from individuals with DS has revealed that T21 induces a genome-wide transcriptional disruption. However, the consequences of T21 on the nuclear architecture and its interplay with the transcriptome remain unknown. In this study, we find that unlike human induced pluripotent stem cells (iPSCs), iPSC-derived neural progenitor cells (NPCs) exhibit genome-wide "chromosomal introversion," disruption of lamina-associated domains, and global chromatin accessibility changes in response to T21, consistent with the transcriptional and nuclear architecture changes characteristic of senescent cells. Treatment of T21-harboring NPCs with senolytic drugs alleviates the transcriptional, molecular, and cellular dysfunctions associated with DS. Our findings provide a mechanistic link between T21 and global transcriptional disruption and indicate that senescence-associated phenotypes may play a key role in the neurodevelopmental pathogenesis of DS.


Subject(s)
Down Syndrome , Induced Pluripotent Stem Cells , Neural Stem Cells , Gene Expression Profiling , Humans , Transcriptome/genetics
5.
Life Sci Alliance ; 4(2)2021 02.
Article in English | MEDLINE | ID: mdl-33361335

ABSTRACT

Synovial sarcoma (SyS) is an aggressive mesenchymal malignancy invariably associated with the chromosomal translocation t(X:18; p11:q11), which results in the in-frame fusion of the BAF complex gene SS18 to one of three SSX genes. Fusion of SS18 to SSX generates an aberrant transcriptional regulator, which, in permissive cells, drives tumor development by initiating major chromatin remodeling events that disrupt the balance between BAF-mediated gene activation and polycomb-dependent repression. Here, we developed SyS organoids and performed genome-wide epigenomic profiling of these models and mesenchymal precursors to define SyS-specific chromatin remodeling mechanisms and dependencies. We show that SS18-SSX induces broad BAF domains at its binding sites, which oppose polycomb repressor complex (PRC) 2 activity, while facilitating recruitment of a non-canonical (nc)PRC1 variant. Along with the uncoupling of polycomb complexes, we observed H3K27me3 eviction, H2AK119ub deposition and the establishment of de novo active regulatory elements that drive SyS identity. These alterations are completely reversible upon SS18-SSX depletion and are associated with vulnerability to USP7 loss, a core member of ncPRC1.1. Using the power of primary tumor organoids, our work helps define the mechanisms of epigenetic dysregulation on which SyS cells are dependent.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Sarcoma, Synovial/genetics , Binding Sites , Chromatin/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Gene Expression Profiling , Histones/metabolism , Humans , Multiprotein Complexes/metabolism , Organoids , Protein Binding , Protein Transport , Sarcoma, Synovial/metabolism , Transcriptome
6.
Oncotarget ; 11(12): 1051-1074, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32256978

ABSTRACT

Polycomb repressive complex 2 (PRC2) allows the deposition of H3K27me3. PRC2 facultative subunits modulate its activity and recruitment such as hPCL3/PHF19, a human ortholog of Drosophila Polycomb-like protein (PCL). These proteins contain a TUDOR domain binding H3K36me3, two PHD domains and a "Winged-helix" domain involved in GC-rich DNA binding. The human PCL3 locus encodes the full-length hPCL3L protein and a shorter isoform, hPCL3S containing the TUDOR and PHD1 domains only. In this study, we demonstrated by RT-qPCR analyses of 25 prostate tumors that hPCL3S is frequently up-regulated. In addition, hPCL3S is overexpressed in the androgen-independent DU145 and PC3 cells, but not in the androgen-dependent LNCaP cells. hPCL3S knockdown decreased the proliferation and migration of DU145 and PC3 whereas its forced expression into LNCaP increased these properties. A mutant hPCL3S unable to bind H3K36me3 (TUDOR-W50A) increased proliferation and migration of LNCaP similarly to wt hPCL3S whereas inactivation of its PHD1 domain decreased proliferation. These effects partially relied on the up-regulation of genes known to be important for the proliferation and/or migration of prostate cancer cells such as S100A16, PlexinA2, and Spondin1. Collectively, our results suggest hPCL3S as a new potential therapeutic target in castration resistant prostate cancers.

7.
Proc Natl Acad Sci U S A ; 116(12): 5223-5232, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30819896

ABSTRACT

Tumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single-cell RNA sequencing in an orthotopic mouse prostate cancer model, we find up-regulation of prolactin receptor as cancer cells that have disseminated to the lungs expand into micrometastases. Secretion of the ligand prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E2 (PGE2). PGE2 treatment of fibroblasts activates the orphan nuclear receptor NR4A (Nur77), with prolactin as a major transcriptional target for the NR4A-retinoid X receptor (RXR) heterodimer. Ectopic expression of prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor celecoxib abrogates prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, prolactin, and prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine cross-talk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression.


Subject(s)
Carcinogenesis/metabolism , Prolactin/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction/physiology , Stromal Cells/metabolism , Animals , Carcinogenesis/drug effects , Celecoxib/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Dinoprostone/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Prostatic Neoplasms/drug therapy , Retinoid X Receptors/metabolism , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/pathology , Up-Regulation/drug effects , Up-Regulation/physiology
8.
Cell ; 171(1): 163-178.e19, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28844694

ABSTRACT

Alterations in transcriptional regulators can orchestrate oncogenic gene expression programs in cancer. Here, we show that the BRG1/BRM-associated factor (BAF) chromatin remodeling complex, which is mutated in over 20% of human tumors, interacts with EWSR1, a member of a family of proteins with prion-like domains (PrLD) that are frequent partners in oncogenic fusions with transcription factors. In Ewing sarcoma, we find that the BAF complex is recruited by the EWS-FLI1 fusion protein to tumor-specific enhancers and contributes to target gene activation. This process is a neomorphic property of EWS-FLI1 compared to wild-type FLI1 and depends on tyrosine residues that are necessary for phase transitions of the EWSR1 prion-like domain. Furthermore, fusion of short fragments of EWSR1 to FLI1 is sufficient to recapitulate BAF complex retargeting and EWS-FLI1 activities. Our studies thus demonstrate that the physical properties of prion-like domains can retarget critical chromatin regulatory complexes to establish and maintain oncogenic gene expression programs.


Subject(s)
Calmodulin-Binding Proteins/chemistry , Calmodulin-Binding Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Sarcoma, Ewing/genetics , Cell Line, Tumor , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Microsatellite Repeats , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Prion Proteins/metabolism , Protein Domains , Sarcoma, Ewing/pathology
9.
Cancer Discov ; 7(3): 288-301, 2017 03.
Article in English | MEDLINE | ID: mdl-28213356

ABSTRACT

Medulloblastoma is the most frequent malignant pediatric brain tumor and is divided into at least four subgroups known as WNT, SHH, Group 3, and Group 4. Here, we characterized gene regulation mechanisms in the most aggressive subtype, Group 3 tumors, through genome-wide chromatin and expression profiling. Our results show that most active distal sites in these tumors are occupied by the transcription factor OTX2. Highly active OTX2-bound enhancers are often arranged as clusters of adjacent peaks and are also bound by the transcription factor NEUROD1. These sites are responsive to OTX2 and NEUROD1 knockdown and could also be generated de novo upon ectopic OTX2 expression in primary cells, showing that OTX2 cooperates with NEUROD1 and plays a major role in maintaining and possibly establishing regulatory elements as a pioneer factor. Among OTX2 target genes, we identified the kinase NEK2, whose knockdown and pharmacologic inhibition decreased cell viability. Our studies thus show that OTX2 controls the regulatory landscape of Group 3 medulloblastoma through cooperative activity at enhancer elements and contributes to the expression of critical target genes.Significance: The gene regulation mechanisms that drive medulloblastoma are not well understood. Using chromatin profiling, we find that the transcription factor OTX2 acts as a pioneer factor and, in cooperation with NEUROD1, controls the Group 3 medulloblastoma active enhancer landscape. OTX2 itself or its target genes, including the mitotic kinase NEK2, represent attractive targets for future therapies. Cancer Discov; 7(3); 288-301. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.


Subject(s)
Cerebellar Neoplasms/genetics , Chromatin/metabolism , Medulloblastoma/genetics , Otx Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Survival/genetics , Cerebellar Neoplasms/pathology , Chromatin/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Humans , Medulloblastoma/pathology , Mesenchymal Stem Cells/physiology , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Otx Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...