Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Biomedicines ; 9(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946782

ABSTRACT

Zinc is a highly abundant cation in the brain, essential for cellular functions, including transcription, enzymatic activity, and cell signaling. However, zinc can also trigger injurious cascades in neurons, contributing to the pathology of neurodegenerative diseases. Mitochondria, critical for meeting the high energy demands of the central nervous system (CNS), are a principal target of the deleterious actions of zinc. An increasing body of work suggests that intracellular zinc can, under certain circumstances, contribute to neuronal damage by inhibiting mitochondrial energy processes, including dissipation of the mitochondrial membrane potential (MMP), leading to ATP depletion. Additional consequences of zinc-mediated mitochondrial damage include reactive oxygen species (ROS) generation, mitochondrial permeability transition, and excitotoxic calcium deregulation. Zinc can also induce mitochondrial fission, resulting in mitochondrial fragmentation, as well as inhibition of mitochondrial motility. Here, we review the known mechanisms responsible for the deleterious actions of zinc on the organelle, within the context of neuronal injury associated with neurodegenerative processes. Elucidating the critical contributions of zinc-induced mitochondrial defects to neurotoxicity and neurodegeneration may provide insight into novel therapeutic targets in the clinical setting.

2.
Front Neurosci ; 14: 778, 2020.
Article in English | MEDLINE | ID: mdl-32792905

ABSTRACT

This special issue of Frontiers in Neuroscience-Neurodegeneration celebrates the 50th anniversary of John Olney's seminal work introducing the concept of excitotoxicity as a mechanism for neuronal cell death. Since that time, fundamental research on the pathophysiological activation of glutamate receptors has played a central role in our understanding of excitotoxic cellular signaling pathways, leading to the discovery of many potential therapeutic targets in the treatment of acute or chronic/progressive neurodegenerative disorders. Importantly, excitotoxic signaling processes have been found repeatedly to be closely intertwined with oxidative cellular cascades. With this in mind, this review looks back at long-standing collaborative efforts by the authors linking cellular redox status and glutamate neurotoxicity, focusing first on the discovery of the redox modulatory site of the N-methyl-D-aspartate (NMDA) receptor, followed by the study of the oxidative conversion of 3,4-dihydroxyphenylalanine (DOPA) to the non-NMDA receptor agonist and neurotoxin 2,4,5-trihydroxyphenylalanine (TOPA) quinone. Finally, we summarize our work linking oxidative injury to the liberation of zinc from intracellular metal binding proteins, leading to the uncovering of a signaling mechanism connecting excitotoxicity with zinc-activated cell death-signaling cascades.

3.
Mov Disord ; 34(5): 708-716, 2019 05.
Article in English | MEDLINE | ID: mdl-30575996

ABSTRACT

BACKGROUND: Pridopidine, in development for Huntington's disease, may modulate aberrant l-dopa-induced effects including l-dopa-induced dyskinesia (LID). OBJECTIVE: This study investigated whether pridopidine could reduce LID in the MPTP macaque model of Parkinson's disease and characterized the observed behavioral effects in terms of receptor occupancy. METHODS: The pharmacokinetic profile and effects of pridopidine (15-30 mg/kg) on parkinsonism, dyskinesia, and quality of on-time, in combination with l-dopa, were assessed in MPTP macaques with LID. Pridopidine receptor occupancy was estimated using known in vitro binding affinities to σ1 and dopamine D2 receptors, in vivo PET imaging, and pharmacokinetic profiling across different species. RESULTS: Pridopidine produced a dose-dependent reduction in dyskinesia (up to 71%, 30 mg/kg) and decreased the duration of on-time with disabling dyskinesia evoked by l-dopa by 37% (20 mg/kg) and 60% (30 mg/kg). Pridopidine did not compromise the anti-parkinsonian benefit of l-dopa. Plasma exposures following the ineffective dose (15 mg/kg) were associated with full σ1 occupancy (>80%), suggesting that σ1 engagement alone is unlikely to account for the antidyskinetic benefits of pridopidine. Exposures following effective doses (20-30 mg/kg), while providing full σ1 occupancy, provide only modest dopamine D2 occupancy (<40%). However, effective pridopidine doses clearly engage a range of receptors (including adrenergic-α2C , dopamine-D3 , and serotoninergic-5-HT1A sites) to a higher degree than D2 and might contribute to the antidyskinetic actions. CONCLUSIONS: In MPTP macaques, pridopidine produced a significant decrease in LID without compromising the antiparkinsonian benefit of l-dopa. Although the actions of pridopidine were associated with full σ1 occupancy, effective exposures are more likely associated with occupancy of additional, non-sigma receptors. This complex pharmacology may underlie the effectiveness of pridopidine against LID. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Levodopa/adverse effects , MPTP Poisoning/drug therapy , Movement/drug effects , Parkinsonian Disorders/drug therapy , Piperidines/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Brain/diagnostic imaging , Brain/metabolism , Dyskinesia, Drug-Induced/etiology , Macaca fascicularis , Parkinsonian Disorders/chemically induced , Positron-Emission Tomography , Receptor, Muscarinic M2/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Receptors, Histamine H3/metabolism , Receptors, sigma/metabolism , Sigma-1 Receptor
4.
J Cell Biol ; 216(4): 1091-1105, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28254829

ABSTRACT

Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity.


Subject(s)
Cell Death/physiology , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Neurons/metabolism , Neurons/physiology , Pyruvic Acid/metabolism , Animals , Energy Metabolism/physiology , Glutamic Acid/metabolism , Mitochondrial Proteins , Monocarboxylic Acid Transporters , Neurodegenerative Diseases/metabolism , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Solute Carrier Proteins
5.
Blood Cells Mol Dis ; 63: 62-65, 2017 03.
Article in English | MEDLINE | ID: mdl-28178599

ABSTRACT

Dexpramipexole, an orally bioavailable small molecule previously under clinical development in amyotrophic lateral sclerosis, was observed during routine safety hematology monitoring to demonstrate pronounced, dose- and time-dependent eosinophil-lowering effects, with minor reductions on other leukocyte counts. Analysis of hematology lab values across two double-blind, randomized placebo-controlled clinical trials at total daily doses ranging from 50mg to 300mg demonstrated that dexpramipexole consistently and markedly lowered peripheral blood eosinophils. This effect developed after 1month on treatment, required 3-4months to reach its maximum, remained constant throughout treatment, and partially recovered to baseline levels upon drug withdrawal. All doses tested were well tolerated. The overall adverse event rate was similar for dexpramipexole and placebo, and notably with no increase in infection-related adverse events associated with eosinophil-lowering effects. Given the reliance on and insufficiency of off-label chronic corticosteroid therapy for hypereosinophilic syndromes and other eosinophilic-associated diseases (EADs), a need exists for less toxic, more effective, targeted therapeutic alternatives. Further clinical studies are underway to assess the eosinophil-lowering effect of dexpramipexole in the peripheral blood and target tissues of EAD patients and whether such reductions, if observed, produce clinically important benefits.


Subject(s)
Benzothiazoles/pharmacology , Eosinophils/drug effects , Benzothiazoles/adverse effects , Benzothiazoles/therapeutic use , Dose-Response Relationship, Drug , Double-Blind Method , Eosinophilia/drug therapy , Eosinophils/cytology , Humans , Hypereosinophilic Syndrome/drug therapy , Infections/chemically induced , Leukocyte Count , Pramipexole
6.
J Pharmacol Exp Ther ; 350(3): 495-505, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24947466

ABSTRACT

There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]-induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis.


Subject(s)
Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/therapeutic use , Disease Models, Animal , Mental Disorders/drug therapy , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/therapeutic use , Thiazoles/chemistry , Thiazoles/therapeutic use , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Anti-Anxiety Agents/pharmacology , Female , Male , Mental Disorders/metabolism , Mental Disorders/psychology , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Pyrimidines/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/physiology , Thiazoles/metabolism
7.
Eur J Pharmacol ; 728: 31-8, 2014 Apr 05.
Article in English | MEDLINE | ID: mdl-24486705

ABSTRACT

Adenosine A2A receptors are predominantly localized on striatopallidal gamma-aminobutyric acid (GABA) neurons, where they are colocalized with dopamine D2 receptors and are involved in the regulation of movement. Adenosine A2A receptor antagonists have been evaluated as a novel treatment for Parkinson's disease and have demonstrated efficacy in a broad spectrum of pharmacological and toxicological rodent and primate models. Fewer studies have been performed to evaluate the efficacy of adenosine A2A receptor antagonists in genetic models of hypodopaminergic states. SCH 412348 is a potent and selective adenosine A2A receptor antagonist that shows efficacy in rodent and primate models of movement disorders. Here we evaluated the effects of SCH 412348 in the MitoPark mouse, a genetic model that displays a progressive loss of dopamine neurons. The dopamine cell loss is associated with a profound akinetic phenotype that is sensitive to levodopa (l-dopa). SCH 412348 (0.3-10mg/kg administered orally) dose dependently increased locomotor activity in the mice. Moreover, SCH 412348 retained its efficacy in the mice as motor impairment progressed (12-22 weeks of age), demonstrating that the compound was efficacious in mild to severe Parkinson's disease-like impairment in the mice. Additionally, SCH 412348 fully restored lost functionality in a measure of hind limb bradykinesia and partially restored functionality in a rotarod test. These findings provide further evidence of the anti-Parkinsonian effects of selective adenosine A2A receptor antagonists and predict that they will retain their efficacy in both mild and severe forms of motor impairment.


Subject(s)
Adenosine A2 Receptor Antagonists/therapeutic use , Antiparkinson Agents/therapeutic use , Parkinsonian Disorders/drug therapy , Pyrimidines/therapeutic use , Receptor, Adenosine A2A/metabolism , Triazoles/therapeutic use , Adenosine A2 Receptor Antagonists/administration & dosage , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/pharmacology , Dose-Response Relationship, Drug , Globus Pallidus/metabolism , Hypokinesia/chemically induced , Male , Mice , Mice, Inbred Strains , Motor Activity/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Protein Binding , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Rotarod Performance Test , Triazoles/administration & dosage , Triazoles/pharmacology , gamma-Aminobutyric Acid/metabolism
8.
J Pharmacol Exp Ther ; 343(1): 167-77, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22787118

ABSTRACT

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGluR4) have been proposed as a novel therapeutic approach for the treatment of Parkinson's disease. However, evaluation of this proposal has been limited by the availability of appropriate pharmacological tools to interrogate the target. In this study, we describe the properties of a novel mGluR4 PAM. 5-Methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine (ADX88178) enhances glutamate-mediated activation of human and rat mGluR4 with EC(50) values of 4 and 9 nM, respectively. The compound is highly selective for mGluR4 with minimal activities at other mGluRs. Oral administration of ADX88178 in rats is associated with high bioavailability and results in cerebrospinal fluid exposure of >50-fold the in vitro EC(50) value. ADX88178 reverses haloperidol-induced catalepsy in rats at 3 and 10 mg/kg. It is noteworthy that this compound alone has no impact on forelimb akinesia resulting from a bilateral 6-hydroxydopamine lesion in rats. However, coadministration of a low dose of L-DOPA (6 mg/kg) enabled a robust, dose-dependent reversal of the forelimb akinesia deficit. ADX88178 also increased the effects of quinpirole in lesioned rats and enhanced the effects of L-DOPA in MitoPark mice. It is noteworthy that the enhancement of the actions of L-DOPA was not associated with an exacerbation of L-DOPA-induced dyskinesias in rats. ADX88178 is a novel, potent, and selective mGluR4 PAM that is a valuable tool for exploring the therapeutic potential of mGluR4 modulation. The use of this novel tool molecule supports the proposal that activation of mGluR4 may be therapeutically useful in Parkinson's disease.


Subject(s)
Disease Models, Animal , Excitatory Amino Acid Agonists/therapeutic use , Parkinson Disease/drug therapy , Receptors, Metabotropic Glutamate/physiology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Excitatory Amino Acid Agonists/pharmacology , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parkinson Disease/physiopathology , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/biosynthesis
9.
Hum Mol Genet ; 21(1): 163-74, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21972245

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic cause of Parkinson's disease (PD) and cause both autosomal dominant familial and sporadic PD. Currently, the physiological and pathogenic activities of LRRK2 are poorly understood. To decipher the biological functions of LRRK2, including the genes and pathways modulated by LRRK2 kinase activity in vivo, we assayed genome-wide mRNA expression in the brain and peripheral tissues from LRRK2 knockout (KO) and kinase hyperactive G2019S (G2019S) transgenic mice. Subtle but significant differences in mRNA expression were observed relative to wild-type (WT) controls in the cortex, striatum and kidney of KO animals, but only in the striatum in the G2019S model. In contrast, robust, consistent and highly significant differences were identified by the direct comparison of KO and G2019S profiles in the cortex, striatum, kidney and muscle, indicating opposite effects on mRNA expression by the two models relative to WT. Ribosomal and glycolytic biological functions were consistently and significantly up-regulated in LRRK2 G2019S compared with LRRK2 KO tissues. Genes involved in membrane-bound organelles, oxidative phosphorylation, mRNA processing and the endoplasmic reticulum were down-regulated in LRRK2 G2019S mice compared with KO. We confirmed the expression patterns of 35 LRRK2-regulated genes using quantitative reverse transcription polymerase chain reaction. These findings provide the first description of the transcriptional responses to genetically modified LRRK2 activity and provide preclinical target engagement and/or pharmacodynamic biomarker strategies for LRRK2 and may inform future therapeutic strategies for LRRK2-associated PD.


Subject(s)
Parkinson Disease/enzymology , Parkinson Disease/genetics , Protein Serine-Threonine Kinases/metabolism , Transcription, Genetic , Animals , Brain/enzymology , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics
10.
J Neurochem ; 118(6): 1016-31, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21736568

ABSTRACT

The EphA4 receptor and its ephrin ligands are involved in astrocytic gliosis following CNS injury. Therefore, a strategy aimed at the blockade of EphA4 signaling could have broad therapeutic interest in brain disorders. We have identified novel small molecule inhibitors of EphA4 kinase in specific enzymatic and cell-based assays. In addition, we have demonstrated in two in vitro models of scratch injury that EphA4 receptor kinase is activated through phosphorylation and is involved in the repopulation of the wound after the scratch. A potent EphA4 kinase inhibitor significantly inhibited wound closure and reduced the accumulation of the reactive astrocytes inside the scratch. We have also shown that after the transient focal cerebral ischemia in rats, a large glial scar is formed by the accumulation of astrocytes and chondroitin sulfate proteoglycan surrounding the infarcted tissue at 7 days and 14 days of reperfusion. EphA4 protein expression is highly up-regulated in the same areas at these time points, supporting its potential role in the glial scar formation and maintenance. Taken together, these results suggest that EphA4 kinase inhibitors might interfere with the astrogliosis reaction and thereby lead to improved neurological outcome after ischemic injury.


Subject(s)
Gliosis/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor, EphA4/antagonists & inhibitors , Wounds and Injuries/pathology , Animals , Astrocytes/pathology , Blotting, Western , CHO Cells , Cell Movement/drug effects , Cells, Cultured , Cricetinae , Cricetulus , Gliosis/pathology , Humans , Immunohistochemistry , Ischemic Attack, Transient/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Rats , Rats, Sprague-Dawley , Small Molecule Libraries , Wound Healing/drug effects
11.
J Alzheimers Dis ; 25(4): 655-69, 2011.
Article in English | MEDLINE | ID: mdl-21483096

ABSTRACT

Accumulation of small soluble assemblies of amyloid-ß (Aß)(42) in the brain is thought to play a key role in the pathogenesis of Alzheimer's disease. As a result, there has been much interest in finding small molecules that inhibit the formation of synaptotoxic Aß(42) oligomers that necessitates sensitive methods for detecting the initial steps in the oligomerization of Aß(42). Modeling suggests that oligomerized Aß(42) adopts a conformation in which the C-terminus is embedded in the center, whereas the N-terminus is exposed at the periphery of the oligomer. Here we report that an inverse change in Aß(42) C-terminal and N-terminal epitope accessibility provides the basis of a sensitive method for assessing early steps in Aß(42) oligomerization. Using ELISA and AlphaLISA, we found that Aß(42) C-terminal immunoreactivity decreased in a time- and concentration-dependent manner under conditions favoring oligomerization. This reduction was accompanied by an increase in the N-terminal immunoreactivity, suggesting that assemblies with multiple exposed N-terminal epitopes were detected. Importantly the assay generates a robust window between monomers and oligomers at as low as 1 nM Aß(42). Using this assay, known oligomerization inhibitors produced a dose-dependent unmasking of the Aß(42) C-terminal epitope. After automation, the assay proved to be highly reproducible and effective for high throughput screening of small molecules that inhibit Aß(42) oligomerization.


Subject(s)
Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/biosynthesis , Immunoassay/methods , Peptide Fragments/analysis , Peptide Fragments/biosynthesis , Alzheimer Disease/immunology , Animals , Dimerization , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Epitopes/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Light , Microscopy, Atomic Force , Neurons/metabolism , Protein Conformation , Rats , Reproducibility of Results , Scattering, Radiation
12.
J Biol Chem ; 286(7): 5215-21, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21118811

ABSTRACT

Apolipoprotein (apo) E4 is the major genetic risk factor for late-onset Alzheimer disease (AD). ApoE4 assumes a pathological conformation through an intramolecular interaction mediated by Arg-61 in the amino-terminal domain and Glu-255 in the carboxyl-terminal domain, referred to as apoE4 domain interaction. Because AD is associated with mitochondrial dysfunction, we examined the effect of apoE4 domain interaction on mitochondrial respiratory function. Steady-state amounts of mitochondrial respiratory complexes were examined in neurons cultured from brain cortices of neuron-specific enolase promoter-driven apoE3 (NSE-apoE3) or apoE4 (NSE-apoE4) transgenic mice. All subunits of mitochondrial respiratory complexes assessed were significantly lower in NSE-apoE4 neurons compared with NSE-apoE3 neurons. However, no significant differences in levels of mitochondrial complexes were detected between astrocytes expressing different apoE isoforms driven by the glial fibrillary acidic protein promoter, leading to our conclusion that the effect of apoE4 is neuron specific. In neuroblastoma Neuro-2A (N2A) cells, apoE4 expression reduced the levels of mitochondrial respiratory complexes I, IV, and V. Complex IV enzymatic activity was also decreased, lowering mitochondrial respiratory capacity. Mutant apoE4 (apoE4-Thr-61) lacking domain interaction did not induce mitochondrial dysfunction in N2A cells, indicating that the effect is specific to apoE4-expressing cells and dependent on domain interaction. Consistent with this finding, treatment of apoE4-expressing N2A cells with a small molecule that disrupts apoE4 domain interaction restored mitochondrial respiratory complex IV levels. These results suggest that pharmacological intervention with small molecules that disrupt apoE4 domain interaction is a potential therapeutic approach for apoE4-carrying AD subjects.


Subject(s)
Alzheimer Disease/metabolism , Apolipoprotein E4/metabolism , Mitochondria/metabolism , Neurons/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Apolipoprotein E4/genetics , Cell Line, Tumor , Electron Transport/genetics , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Humans , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/pathology , Neurons/pathology , Protein Structure, Tertiary , Risk Factors
13.
J Pharmacol Toxicol Methods ; 61(3): 319-28, 2010.
Article in English | MEDLINE | ID: mdl-20132901

ABSTRACT

INTRODUCTION: Poly ADP-ribose polymerase (PARP) maintains genomic integrity by repairing DNA strand breaks, however over-activation of PARP following neural tissue injury is hypothesized to cause neuronal death. Therefore, PARP inhibitors have potential for limiting neural injury under certain conditions. A reliable method for assessing PARP activity in brain is critical for development of novel inhibitors with CNS activity. We developed the PARP In Situ Activity (PISA) assay to provide a direct, quantitative assessment of CNS PARP activity in vitro or in vivo. METHODS: The assay utilized brain sections from rats with striatal kainic acid (KA) lesions and 3H- or biotinylated NAD+ as the substrate to assess PARP activity. Following optimization of the assay, it was used to assess in vitro and in vivo efficacy of known and novel PARP inhibitors. The assay also was used to assess PARP activity in male and female gonad-intact and ovariectomized rats. RESULTS: Using 3H-NAD+ as the substrate, PARP activity was greater (p<0.01) in tissue from KA-lesioned vs. non-lesioned rats. Using biotinylated NAD+ it was revealed that PARP activity was present ipsilateral to the KA injection site, and labeling was blocked by incubation with excess unlabeled NAD+ or PARP inhibitors. The PARP inhibitor, 3-aminobenzamide and several novel inhibitors reduced (p<0.01) polymerase activity in vitro. Furthermore, the inhibitor MRLSD303 reduced (p<0.001) PARP activity in vivo in both male and female rats. Finally, administration of the novel PARP inhibitor MRLIT115 dose-dependently reduced (p<0.001) polymerase activity in vivo. DISCUSSION: The PISA assay provides a direct, quantitative method for assessing PARP activity in vitro and provides critical information on factors underlying in vivo efficacy of chemical inhibitors including brain penetration and target engagement. These findings support use of the PISA assay as a screening tool for testing efficacy of PARP inhibitors in brain.


Subject(s)
Enzyme Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/metabolism , Animals , Benzamides/pharmacology , Brain/drug effects , Brain/enzymology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Female , Male , Models, Animal , Rats , Rats, Sprague-Dawley
14.
Biochim Biophys Acta ; 1802(1): 143-50, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19747973

ABSTRACT

Alterations in mitochondrial function may have a central role in the pathogenesis of many neurodegenerative diseases. The study of mitochondrial dysfunction has typically focused on ATP generation, calcium homeostasis and the production of reactive oxygen species. However, there is a growing appreciation of the dynamic nature of mitochondria within cells. Mitochondria are highly motile organelles, and also constantly undergo fission and fusion. This raises the possibility that impairment of mitochondrial dynamics could contribute to the pathogenesis of neuronal injury. In this review we describe the mechanisms that govern mitochondrial movement, fission and fusion. The key proteins that are involved in mitochondrial fission and fusion have also been linked to some inherited neurological diseases, including autosomal dominant optic atrophy and Charcot-Marie-Tooth disease 2A. We will discuss the evidence that altered movement, fission and fusion are associated with impaired neuronal viability. There is a growing collection of literature that links impaired mitochondrial dynamics to a number of disease models. Additionally, the concept that the failure to deliver a functional mitochondrion to the appropriate site within a neuron could contribute to neuronal dysfunction provides an attractive framework for understanding the mechanisms underlying neurologic disease. However, it remains difficult to clearly establish that altered mitochondrial dynamics clearly represent a cause of neuronal dysfunction.


Subject(s)
Mitochondria/metabolism , Mitochondria/ultrastructure , Neurodegenerative Diseases/pathology , Neurons/ultrastructure , Adenosine Triphosphate/metabolism , Animals , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurons/metabolism
15.
J Med Chem ; 51(20): 6471-7, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18817368

ABSTRACT

The discovery of a novel series of potent and selective T-type calcium channel antagonists is reported. Initial optimization of high-throughput screening leads afforded a 1,4-substituted piperidine amide 6 with good potency and limited selectivity over hERG and L-type channels and other off-target activities. Further SAR on reducing the basicity of the piperidine and introducing polarity led to the discovery of 3-axial fluoropiperidine 30 with a significantly improved selectivity profile. Compound 30 showed good oral bioavailability and brain penetration across species. In a rat genetic model of absence epilepsy, compound 30 demonstrated a robust reduction in the number and duration of seizures at 33 nM plasma concentration, with no cardiovascular effects at up to 5.6 microM. Compound 30 also showed good efficacy in rodent models of essential tremor and Parkinson's disease. Compound 30 thus demonstrates a wide margin between CNS and peripheral effects and is a useful tool for probing the effects of T-type calcium channel inhibition.


Subject(s)
Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Piperidines/chemical synthesis , Piperidines/pharmacology , Animals , Calcium Channel Blockers/chemistry , Cardiovascular System/drug effects , Drug Evaluation, Preclinical , Humans , Molecular Structure , Piperidines/chemistry , Rats , Structure-Activity Relationship
16.
J Neurochem ; 106(5): 2184-93, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18624907

ABSTRACT

Liberation of zinc from intracellular stores contributes to oxidant-induced neuronal injury. However, little is known regarding how endogenous oxidant systems regulate intracellular free zinc ([Zn(2+)](i)). Here we simultaneously imaged [Ca(2+)](i) and [Zn(2+)](i) to study acute [Zn(2+)](i) changes in cultured rat forebrain neurons after glutamate receptor activation. Neurons were loaded with fura-2FF and FluoZin-3 to follow [Ca(2+)](i) and [Zn(2+)](i), respectively. Neurons treated with glutamate (100 microM) for 10 min gave large Ca(2+) responses that did not recover after termination of the glutamate stimulus. Glutamate also increased [Zn(2+)](i), however glutamate-induced [Zn(2+)](i) changes were completely dependent on Ca(2+) entry, appeared to arise entirely from internal stores, and were substantially reduced by co-application of the membrane-permeant chelator TPEN during the glutamate treatment. Pharmacological maneuvers revealed that a number of endogenous oxidant producing systems, including nitric oxide synthase, phospholipase A(2), and mitochondria all contributed to glutamate-induced [Zn(2+)](i) changes. We found no evidence that mitochondria buffered [Zn(2+)](i) during acute glutamate receptor activation. We conclude that glutamate-induced [Zn(2+)](i) transients are caused in part by [Ca(2+)](i)-induced reactive oxygen species that arises from both cytosolic and mitochondrial sources.


Subject(s)
Calcium Signaling/physiology , Glutamic Acid/metabolism , Nerve Degeneration/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Zinc/metabolism , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Cells, Cultured , Chelating Agents/pharmacology , Cytosol/drug effects , Cytosol/metabolism , Fluorescent Dyes , Fura-2 , Glutamic Acid/pharmacology , Intracellular Fluid/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Nerve Degeneration/physiopathology , Neurons/drug effects , Neurons/metabolism , Oxidants/biosynthesis , Oxidative Stress/drug effects , Polycyclic Compounds , Rats , Rats, Sprague-Dawley , Receptors, Glutamate/drug effects , Receptors, Glutamate/metabolism , Zinc/pharmacology
17.
Pain ; 138(3): 484-496, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18343036

ABSTRACT

Recent studies indicate that ATP and UTP act at G protein-coupled (P2Y) nucleotide receptors to excite nociceptive sensory neurons; nucleotides also potentiate signaling through the pro-nociceptive capsaicin receptor, TRPV1. We demonstrate here that P2Y(2) is the principal UTP receptor in somatosensory neurons: P2Y(2) is highly expressed in dorsal root ganglia and P2Y(2)-/- mice showed profound deficits in UTP-evoked calcium transients and potentiation of capsaicin responses. P2Y(2)-/- mice were also deficient in the detection of painful heat: baseline thermal response latencies were increased and mutant mice failed to develop thermal hypersensitivity in response to inflammatory injury (injection of complete Freund's adjuvant into the hindpaw). P2Y(2) was the only Gq-coupled P2Y receptor examined that showed an increase in DRG mRNA levels in response to inflammation. Surprisingly, TRPV1 function was also attenuated in P2Y(2)-/- mice, as measured by the frequency and magnitude of capsaicin responses in vitro and behavioral responses to capsaicin administration in vivo. However, TRPV1 mRNA levels and immunoreactivity were not reduced, and behavioral sensitivity to capsaicin could be largely restored in P2Y(2)-/- mice by pretreatment with bradykinin, suggesting that normal function of TRPV1 requires ongoing modulation by G protein-coupled receptors. These results indicate that nucleotide signaling through P2Y(2) plays a key role in thermal nociception.


Subject(s)
Hot Temperature/adverse effects , Pain Measurement/methods , Pain/metabolism , Receptors, Purinergic P2/deficiency , Receptors, Purinergic P2/physiology , TRPV Cation Channels/physiology , Animals , Capsaicin/pharmacology , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Gene Expression Regulation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pain/genetics , RNA, Messenger/biosynthesis , Receptors, Purinergic P2/biosynthesis , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2Y2 , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , TRPV Cation Channels/biosynthesis , TRPV Cation Channels/genetics , Uridine Triphosphate/metabolism
18.
J Biol Chem ; 282(8): 5171-9, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17189252

ABSTRACT

NADH dehydrogenase subunit 2, encoded by the mtDNA, has been associated with resistance to autoimmune type I diabetes (T1D) in a case control study. Recently, we confirmed a role for the mouse ortholog of the protective allele (mt-Nd2(a)) in resistance to T1D using genetic analysis of outcrosses between T1D-resistant ALR and T1D-susceptible NOD mice. We sought to determine the mechanism of disease protection by elucidating whether mt-Nd2(a) affects basal mitochondrial function or mitochondrial function in the presence of oxidative stress. Two lines of reciprocal conplastic mouse strains were generated: one with ALR nuclear DNA and NOD mtDNA (ALR.mt(NOD)) and the reciprocal with NOD nuclear DNA and ALR mtDNA (NOD.mt(ALR)). Basal mitochondrial respiration, transmembrane potential, and electron transport system enzymatic activities showed no difference among the strains. However, ALR.mt(NOD) mitochondria supported by either complex I or complex II substrates produced significantly more reactive oxygen species when compared with both parental strains, NOD.mt(ALR) or C57BL/6 controls. Nitric oxide inhibited respiration to a similar extent for mitochondria from the five strains due to competitive antagonism with molecular oxygen at complex IV. Superoxide and hydrogen peroxide generated by xanthine oxidase did not significantly decrease complex I function. The protein nitrating agents peroxynitrite or nitrogen dioxide radicals significantly decreased complex I function but with no significant difference among the five strains. In summary, mt-Nd2(a) does not confer elevated resistance to oxidative stress; however, it plays a critical role in the control of the mitochondrial reactive oxygen species production.


Subject(s)
Diabetes Mellitus, Type 1/enzymology , Electron Transport Complex I/metabolism , Mitochondria, Liver/enzymology , Mitochondrial Proteins/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Alleles , Animals , Diabetes Mellitus, Type 1/genetics , Electron Transport/genetics , Electron Transport Complex I/genetics , Free Radical Scavengers/pharmacology , Inbreeding , Membrane Potential, Mitochondrial/genetics , Mice , Mice, Inbred NOD , Mitochondria, Liver/genetics , Mitochondrial Proteins/genetics , Nitric Oxide/pharmacology , Oxidative Stress/genetics , Oxygen Consumption/genetics , Protein Subunits/genetics , Protein Subunits/metabolism , Species Specificity , Xanthine Oxidase/genetics , Xanthine Oxidase/metabolism
19.
Prog Neurobiol ; 80(5): 241-68, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17188795

ABSTRACT

Mitochondria are the primary generators of ATP and are important regulators of intracellular calcium homeostasis. These organelles are dynamically transported along lengthy neuronal processes, presumably for appropriate distribution to cellular regions of high metabolic demand and elevated intracellular calcium, such as synapses. The removal of damaged mitochondria that produce harmful reactive oxygen species and promote apoptosis is also thought to be mediated by transport of mitochondria to autophagosomes. Mitochondrial trafficking is therefore important for maintaining neuronal and mitochondrial health while cessation of movement may lead to neuronal and mitochondrial dysfunction. Mitochondrial morphology is also dynamic and is remodeled during neuronal injury and disease. Recent studies reveal different manifestations and mechanisms of impaired mitochondrial movement and altered morphology in injured neurons. These are likely to cause varied courses toward neuronal degeneration and death. The goal of this review is to provide an appreciation of the full range of mitochondrial function, morphology and trafficking, and the critical role these parameters play in neuronal physiology and pathophysiology.


Subject(s)
Biological Transport/physiology , Mitochondria/pathology , Mitochondria/physiology , Neurons , Animals , Brain/pathology , Brain/physiology , Brain Injuries/pathology , Brain Injuries/physiopathology , Calcium/metabolism , Humans , Neurons/pathology , Neurons/physiology , Neurons/ultrastructure , Reactive Oxygen Species/metabolism
20.
J Neurosci ; 26(26): 7035-45, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-16807333

ABSTRACT

Functional synapses require mitochondria to supply ATP and regulate local [Ca2+]i for neurotransmission. Mitochondria are thought to be transported to specific cellular regions of increased need such as synapses. However, little is known about how this occurs, including the spatiotemporal distribution of mitochondria relative to presynaptic and postsynaptic sites, whether mitochondria are dynamically recruited to synapses, and how synaptic activity affects these trafficking patterns. We used primary cortical neurons in culture that form synaptic connections and show spontaneous synaptic activity under normal conditions. Neurons were cotransfected with a mitochondrially targeted cyan fluorescent protein and an enhanced yellow fluorescent protein-tagged synaptophysin or postsynaptic density-95 plasmid to label presynaptic or postsynaptic structures, respectively. Fluorescence microscopy revealed longer dendritic mitochondria that occupied a greater fraction of neuronal process length than axonal mitochondria. Mitochondria were significantly more likely to be localized at synaptic sites. Although this localization was unchanged by inhibition of synaptic activity by tetrodotoxin, it increased in dendritic synapses and decreased in axonal synapses during overactivity by veratridine. Mitochondrial movement and recruitment to synapses also differed between axons and dendrites under basal conditions and when synaptic activity was altered. Additionally, we show that movement of dendritic mitochondria can be selectively impaired by glutamate and zinc. We conclude that mitochondrial trafficking to synapses is dynamic in neurons and is modulated by changes in synaptic activity. Furthermore, mitochondrial morphology and distribution may be optimized differentially to best serve the synaptic distributions in axons and dendrites. Last, selective cessation of mitochondrial movement in dendrites suggests early postsynaptic dysfunction in neuronal injury and degeneration.


Subject(s)
Cerebral Cortex/physiology , Mitochondria/physiology , Neurons/physiology , Synapses/physiology , Animals , Axons/ultrastructure , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/ultrastructure , Dendrites/ultrastructure , Mitochondria/drug effects , Mitochondria/ultrastructure , Neurons/ultrastructure , Neurotoxins/pharmacology , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL