Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (196)2023 06 02.
Article in English | MEDLINE | ID: mdl-37335099

ABSTRACT

Testing the function of therapeutic compounds in plants is an important component of agricultural research. Foliar and soil-drench methods are routine but have drawbacks, including variable uptake and the environmental breakdown of tested molecules. Trunk injection of trees is well-established, but most methods for this require expensive, proprietary equipment. To screen various treatments for Huanglongbing, a simple, low-cost method to deliver these compounds to the vascular tissue of small greenhouse-grown citrus trees infected with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) or infested with the phloem-feeding CLas insect vector Diaphorina citri Kuwayama (D. citri) is needed. To meet these screening requirements, a direct plant infusion (DPI) device was designed that connects to the plant's trunk. The device is made using a nylon-based 3D-printing system and easily obtainable auxiliary components. The compound uptake efficacy of this device was tested in citrus plants using the fluorescent marker 5,6-carboxyfluorescein-diacetate. Uniform compound distribution of the marker throughout the plants was routinely observed. Furthermore, this device was used to deliver antimicrobial and insecticidal molecules to determine their effects on CLas and D. citri respectively. The aminoglycoside antibiotic streptomycin was delivered into CLas-infected citrus plants using the device, which resulted in a reduction in the CLas titer from 2 weeks to 4 weeks post treatment. Delivering the neonicotinoid insecticide imidacloprid into D. citri-infested citrus plants resulted in a significant increase in psyllid mortality after 7 days. These results suggest that this DPI device represents a useful system for delivering molecules into plants for testing and facilitate research and screening purposes.


Subject(s)
Citrus , Hemiptera , Insecticides , Rhizobiaceae , Animals , Hemiptera/microbiology , Plant Diseases/microbiology
2.
PLoS One ; 9(6): e100948, 2014.
Article in English | MEDLINE | ID: mdl-24959875

ABSTRACT

Advances in molecular and synthetic biology call for efficient assembly of multi-modular DNA constructs. We hereby present a novel modular cloning method that obviates the need for restriction endonucleases and significantly improves the efficiency in the design and construction of complex DNA molecules by standardizing all DNA elements and cloning reactions. Our system, named HomeRun Vector Assembly System (HVAS), employs a three-tiered vector series that utilizes both multisite gateway cloning and homing endonucleases, with the former building individual functional modules and the latter linking modules into the final construct. As a proof-of-principle, we first built a two-module construct that supported doxycycline-induced expression of green fluorescent protein (GFP). Further, with a three-module construct we showed quantitatively that there was minimal promoter leakage between neighbouring modules. Finally, we developed a method, in vitro Cre recombinase-mediated cassette exchange (RMCE) cloning, to regenerate a gateway destination vector from a previous multisite gateway cloning reaction, allowing access to existing DNA element libraries in conventional gateway entry clones, and simple creation of constructs ready for in vivo RMCE. We believe these methods constitute a useful addition to the standard molecular cloning techniques that could potentially support industrial scale synthesis of DNA constructs.


Subject(s)
Cloning, Molecular/methods , DNA/chemistry , Genetic Vectors , HCT116 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL