Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Clin Periodontol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745393

ABSTRACT

AIM: The oral microenvironment contributes to microbial composition and immune equilibrium. It is considered to be influenced by dietary habits. Phenylketonuria (PKU) patients, who follow a lifelong low-protein diet, exhibit higher prevalence of oral diseases such as periodontitis, offering a suitable model to explore the interplay between diet, oral microbiota and oral health. MATERIALS AND METHODS: We conducted 16S rDNA sequencing on saliva and subgingival plaque from 109 PKU patients (ages 6-68 years) and 114 age-matched controls and correlated oral microbial composition and dental health. RESULTS: PKU patients exhibited worse dental health, reduced oral microbial diversity and a difference in the abundance of specific taxa, especially Actinobacteriota species, compared to controls. PKU patients with poor periodontal health exhibited higher alpha diversity than the orally healthy ones, marked by high abundance of the genus Tannerella. Notably, the observed taxonomic differences in PKU patients with normal indices of decayed/missing/filled teeth, plaque control record, gingival bleeding index and periodontal screening and recording index generally differed from microbial signatures of periodontitis. CONCLUSIONS: PKU patients' reduced microbial diversity may be due to their diet's metabolic challenges disrupting microbial and immune balance, thus increasing oral inflammation. Higher alpha diversity in PKU patients with oral inflammation is likely related to expanded microbial niches.

2.
J Clin Periodontol ; 51(4): 431-440, 2024 04.
Article in English | MEDLINE | ID: mdl-38140892

ABSTRACT

AIM: Few genome-wide association studies (GWAS) have been conducted for severe forms of periodontitis (stage III/IV grade C), and the number of known risk genes is scarce. To identify further genetic risk variants to improve the understanding of the disease aetiology, a GWAS meta-analysis in cases with a diagnosis at ≤35 years of age was performed. MATERIALS AND METHODS: Genotypes from German, Dutch and Spanish GWAS studies of III/IV-C periodontitis diagnosed at age ≤35 years were imputed using TopMed. After quality control, a meta-analysis was conducted on 8,666,460 variants in 1306 cases and 7817 controls with METAL. Variants were prioritized using FUMA for gene-based tests, functional annotation and a transcriptome-wide association study integrating eQTL data. RESULTS: The study identified a novel genome-wide significant association in the FCER1G gene (p = 1.0 × 10-9 ), which was previously suggestively associated with III/IV-C periodontitis. Six additional genes showed suggestive association with p < 10-5 , including the known risk gene SIGLEC5. HMCN2 showed the second strongest association in this study (p = 6.1 × 10-8 ). CONCLUSIONS: This study expands the set of known genetic loci for severe periodontitis with an age of onset ≤35 years. The putative functions ascribed to the associated genes highlight the significance of oral barrier tissue stability, wound healing and tissue regeneration in the aetiology of these periodontitis forms and suggest the importance of tissue regeneration in maintaining oral health.


Subject(s)
Genome-Wide Association Study , Periodontitis , Humans , Adult , Genotype , Periodontitis/genetics , Risk Factors , Genetic Loci/genetics
3.
Eur Biophys J ; 52(4-5): 393-400, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37289289

ABSTRACT

Lipid nanoparticles as delivery system for mRNA have recently attracted attention to a broader audience as COVID-19 mRNA vaccines. Their low immunogenicity and capability to deliver a variety of nucleic acids renders them an interesting and complementary alternative to gene therapy vectors like AAVs. An important quality attribute of LNPs is the copy number of the encapsulated cargo molecule. This work describes how density and molecular weight distributions obtained by density contrast sedimentation velocity can be used to calculate the mRNA copy number of a degradable lipid nanoparticle formulation. The determined average copy number of 5 mRNA molecules per LNP is consistent with the previous studies using other biophysical techniques, such as single particle imaging microscopy and multi-laser cylindrical illumination confocal spectroscopy (CICS).


Subject(s)
COVID-19 , Nanoparticles , Humans , RNA, Messenger/genetics , DNA Copy Number Variations , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , Ultracentrifugation
4.
Pharmaceutics ; 14(6)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35745826

ABSTRACT

The success of biotherapeutics is often challenged by the undesirable events of immunogenicity in patients, characterized by the formation of anti-drug antibodies (ADA). Under specific conditions, the ADAs recognizing the biotherapeutic can trigger the formation of immune complexes (ICs), followed by cascades of subsequent effects on various cell types. Hereby, the connection between the characteristics of ICs and their downstream impact is still not well understood. Factors governing the formation of ICs and the characteristics of these IC species were assessed systematically in vitro. Classic analytical methodologies such as SEC-MALS and SV-AUC, and the state-of-the-art technology mass photometry were applied for the characterization. The study demonstrates a clear interplay between (1) the absolute concentration of the involved components, (2) their molar ratios, (3) structural features of the biologic, (4) and of its endogenous target. This surrogate study design and the associated analytical tool-box is readily applicable to most biotherapeutics and provides valuable insights into mechanisms of IC formation prior to FIH studies. The applicability is versatile-from the detection of candidates with immunogenicity risks during developability assessment to evaluation of the impact of degraded or post-translationally modified biotherapeutics on the formation of ICs.

5.
Clin Epigenetics ; 13(1): 203, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732256

ABSTRACT

BACKGROUND: In mucosal barrier interfaces, flexible responses of gene expression to long-term environmental changes allow adaptation and fine-tuning for the balance of host defense and uncontrolled not-resolving inflammation. Epigenetic modifications of the chromatin confer plasticity to the genetic information and give insight into how tissues use the genetic information to adapt to environmental factors. The oral mucosa is particularly exposed to environmental stressors such as a variable microbiota. Likewise, persistent oral inflammation is the most important intrinsic risk factor for the oral inflammatory disease periodontitis and has strong potential to alter DNA-methylation patterns. The aim of the current study was to identify epigenetic changes of the oral masticatory mucosa in response to long-term inflammation that resulted in periodontitis. METHODS AND RESULTS: Genome-wide CpG methylation of both inflamed and clinically uninflamed solid gingival tissue biopsies of 60 periodontitis cases was analyzed using the Infinium MethylationEPIC BeadChip. We validated and performed cell-type deconvolution for infiltrated immune cells using the EpiDish algorithm. Effect sizes of DMPs in gingival epithelial and fibroblast cells were estimated and adjusted for confounding factors using our recently developed "intercept-method". In the current EWAS, we identified various genes that showed significantly different methylation between periodontitis-inflamed and uninflamed oral mucosa in periodontitis patients. The strongest differences were observed for genes with roles in wound healing (ROBO2, PTP4A3), cell adhesion (LPXN) and innate immune response (CCL26, DNAJC1, BPI). Enrichment analyses implied a role of epigenetic changes for vesicle trafficking gene sets. CONCLUSIONS: Our results imply specific adaptations of the oral mucosa to a persistent inflammatory environment that involve wound repair, barrier integrity, and innate immune defense.


Subject(s)
Inflammation/genetics , Mucous Membrane/abnormalities , Periodontal Diseases/genetics , Stomatognathic System/physiopathology , Adult , Epigenesis, Genetic/genetics , Epigenesis, Genetic/immunology , Female , Humans , Inflammation/physiopathology , Male , Middle Aged , Mucous Membrane/physiopathology , Periodontal Diseases/physiopathology
6.
Cell Rep ; 36(4): 109446, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34320339

ABSTRACT

Transcription factors harbor defined regulatory intrinsically disordered regions (IDRs), which raises the question of how they mediate binding to structured co-regulators and modulate their activity. Here, we present a detailed molecular regulatory mechanism of Forkhead box O4 (FOXO4) by the structured transcriptional co-regulator ß-catenin. We find that the disordered FOXO4 C-terminal region, which contains its transactivation domain, binds ß-catenin through two defined interaction sites, and this is regulated by combined PKB/AKT- and CK1-mediated phosphorylation. Binding of ß-catenin competes with the autoinhibitory interaction of the FOXO4 disordered region with its DNA-binding Forkhead domain, and thereby enhances FOXO4 transcriptional activity. Furthermore, we show that binding of the ß-catenin inhibitor protein ICAT is compatible with FOXO4 binding to ß-catenin, suggesting that ICAT acts as a molecular switch between anti-proliferative FOXO and pro-proliferative Wnt/TCF/LEF signaling. These data illustrate how the interplay of IDRs, post-translational modifications, and co-factor binding contribute to transcription factor function.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/metabolism , Intrinsically Disordered Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Motifs , Binding Sites , Casein Kinase I/metabolism , DNA/metabolism , HEK293 Cells , Humans , Models, Molecular , Oxidation-Reduction , Phosphorylation , Protein Binding , Protein Domains , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Structure-Activity Relationship , Thermodynamics , beta Catenin/metabolism
7.
Cell Rep ; 35(2): 108985, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852843

ABSTRACT

Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.


Subject(s)
Aging/genetics , Autophagy-Related Protein 7/genetics , Cognitive Dysfunction/genetics , Dietary Supplements , Protein Kinases/genetics , Spermidine/pharmacology , Ubiquitin-Protein Ligases/genetics , Aging/metabolism , Animals , Autophagy-Related Protein 7/metabolism , Brain/cytology , Brain/drug effects , Brain/growth & development , Brain/metabolism , Cognition/drug effects , Cognition/physiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/prevention & control , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation , Humans , Learning/drug effects , Learning/physiology , Male , Mice , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Neurons/drug effects , Neurons/metabolism , Oxidative Phosphorylation/drug effects , Protein Kinases/metabolism , Signal Transduction , Spatial Memory/drug effects , Spatial Memory/physiology , Ubiquitin-Protein Ligases/metabolism
8.
Clin Epigenetics ; 13(1): 98, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33926513

ABSTRACT

BACKGROUND: In DNA methylation analyses like epigenome-wide association studies, effects in differentially methylated CpG sites are assessed. Two kinds of outcomes can be used for statistical analysis: Beta-values and M-values. M-values follow a normal distribution and help to detect differentially methylated CpG sites. As biological effect measures, differences of M-values are more or less meaningless. Beta-values are of more interest since they can be interpreted directly as differences in percentage of DNA methylation at a given CpG site, but they have poor statistical properties. Different frameworks are proposed for reporting estimands in DNA methylation analysis, relying on Beta-values, M-values, or both. RESULTS: We present and discuss four possible approaches of achieving estimands in DNA methylation analysis. In addition, we present the usage of M-values or Beta-values in the context of bioinformatical pipelines, which often demand a predefined outcome. We show the dependencies between the differences in M-values to differences in Beta-values in two data simulations: a analysis with and without confounder effect. Without present confounder effects, M-values can be used for the statistical analysis and Beta-values statistics for the reporting. If confounder effects exist, we demonstrate the deviations and correct the effects by the intercept method. Finally, we demonstrate the theoretical problem on two large human genome-wide DNA methylation datasets to verify the results. CONCLUSIONS: The usage of M-values in the analysis of DNA methylation data will produce effect estimates, which cannot be biologically interpreted. The parallel usage of Beta-value statistics ignores possible confounder effects and can therefore not be recommended. Hence, if the differences in Beta-values are the focus of the study, the intercept method is recommendable. Hyper- or hypomethylated CpG sites must then be carefully evaluated. If an exploratory analysis of possible CpG sites is the aim of the study, M-values can be used for inference.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenome/genetics , Genome-Wide Association Study/methods , Humans
9.
Pharmaceutics ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35056965

ABSTRACT

A fundamental step in developing a protein drug is the selection of a stable storage formulation that ensures efficacy of the drug and inhibits physiochemical degradation or aggregation. Here, we designed and evaluated a general workflow for screening of protein formulations based on small-angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling, temperature control, and fast data analysis and provides protein particle interaction information. SAXS, together with different methods including turbidity analysis, dynamic light scattering (DLS), and SDS-PAGE measurements, were used to obtain different parameters to provide high throughput screenings. Using a set of model proteins and biopharmaceuticals, we show that SAXS is complementary to dynamic light scattering (DLS), which is widely used in biopharmaceutical research and industry. We found that, compared to DLS, SAXS can provide a more sensitive measure for protein particle interactions, such as protein aggregation and repulsion. Moreover, we show that SAXS is compatible with a broader range of buffers, excipients, and protein concentrations and that in situ SAXS provides a sensitive measure for long-term protein stability. This workflow can enable future high-throughput analysis of proteins and biopharmaceuticals and can be integrated with well-established complementary physicochemical analysis pipelines in (biopharmaceutical) research and industry.

10.
FEBS J ; 288(10): 3261-3284, 2021 05.
Article in English | MEDLINE | ID: mdl-33284517

ABSTRACT

The transcription factor forkhead box protein P2 (FOXP2) is a highly conserved key regulator of embryonal development. The molecular mechanisms of how FOXP2 regulates embryonal development, however, remain elusive. Using RNA sequencing, we identified the Wnt signaling pathway as key target of FOXP2-dependent transcriptional regulation. Using cell-based assays, we show that FOXP2 transcriptional activity is regulated by the Wnt coregulator ß-catenin and that ß-catenin contacts multiple regions within FOXP2. Using nuclear magnetic resonance spectroscopy, we uncovered the molecular details of these interactions. ß-catenin contacts a disordered FOXP2 region with α-helical propensity via its folded armadillo domain, whereas the intrinsically disordered ß-catenin N terminus and C terminus bind to the conserved FOXP2 DNA-binding domain. Using RNA sequencing, we confirmed that ß-catenin indeed regulates transcriptional activity of FOXP2 and that the FOXP2 α-helical motif acts as a key regulatory element of FOXP2 transcriptional activity. Taken together, our findings provide first insight into novel regulatory interactions and help to understand the intricate mechanisms of FOXP2 function and (mis)-regulation in embryonal development and human diseases. DATABASE: Expression data are available in the GEO database under the accession number GSE138938.


Subject(s)
Forkhead Transcription Factors/chemistry , Gene Expression Regulation, Developmental , Transcription, Genetic , Wnt Signaling Pathway/genetics , beta Catenin/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cell Line, Tumor , Cloning, Molecular , Embryo, Mammalian , Escherichia coli/genetics , Escherichia coli/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Models, Molecular , Osteoblasts/cytology , Osteoblasts/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , beta Catenin/genetics , beta Catenin/metabolism
11.
Sci Transl Med ; 12(567)2020 10 28.
Article in English | MEDLINE | ID: mdl-33115954

ABSTRACT

Acute myeloid leukemia (AML) relapse after allogeneic hematopoietic cell transplantation (allo-HCT) has a dismal prognosis. We found that T cells of patients relapsing with AML after allo-HCT exhibited reduced glycolysis and interferon-γ production. Functional studies in multiple mouse models of leukemia showed that leukemia-derived lactic acid (LA) interfered with T cell glycolysis and proliferation. Mechanistically, LA reduced intracellular pH in T cells, led to lower transcription of glycolysis-related enzymes, and decreased activity of essential metabolic pathways. Metabolic reprogramming by sodium bicarbonate (NaBi) reversed the LA-induced low intracellular pH, restored metabolite concentrations, led to incorporation of LA into the tricarboxylic acid cycle as an additional energy source, and enhanced graft-versus-leukemia activity of murine and human T cells. NaBi treatment of post-allo-HCT patients with relapsed AML improved metabolic fitness and interferon-γ production in T cells. Overall, we show that metabolic reprogramming of donor T cells is a pharmacological strategy for patients with relapsed AML after allo-HCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Animals , Humans , Leukemia, Myeloid, Acute/therapy , Mice , T-Lymphocytes , Tissue Donors , Transplantation, Homologous
12.
mSystems ; 5(3)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32518196

ABSTRACT

Preterm birth (PTB) is one of the leading causes of neonatal mortality. The causes for spontaneous PTB are multifactorial and often remain unknown. In this study, we tested the hypothesis that human milk oligosaccharides (HMOs) in blood and urine modulate the maternal urinary and vaginal microbiome and influence the risk for PTB. We analyzed the vaginal and urinary microbiome of a cross-sectional cohort of women with or without preterm labor and correlated our findings with measurements of metabolites and HMOs in urine and blood. We identified several microbial signatures, such as Lactobacillus jensenii, L. gasseri, Ureaplasma sp., and Gardnerella sp., associated with a short cervix, PTB, and/or preterm contractions. In addition, we observed associations between sialylated HMOs, in particular 3'-sialyllactose, with PTB, short cervix, and increased inflammation and confirmed an influence of HMOs on the microbiome profile. Since they identify serum and urinary HMOs and several key microorganisms associated with PTB, our findings point at two distinct processes modulating the risk for PTB. One process seems to be driven by sterile inflammation, characterized by increased concentrations of sialylated HMOs in serum. Another process might be microbiome mediated and potentially associated with specific HMO signatures in urine. Our results support current efforts to improve diagnostics and therapeutic strategies in PTB.IMPORTANCE The causes for preterm birth (PTB) often remain elusive. We investigated whether circulating human milk oligosaccharides (HMOs) might be involved in modulating urinary and vaginal microbiome promoting or preventing PTB. We identified here HMOs and key microbial taxa associated with indicators of PTB. Based on our results, we propose two models for how HMOs might modulate risk for PTB: (i) by changes in HMOs associated with sterile inflammation (microbiome-independent) and (ii) by HMO-driven shifts in microbiome (microbiome-dependent). Our findings will guide current efforts to better predict the risk for PTB in seemingly healthy pregnant women and also provide appropriate preventive strategies.

13.
Proc Natl Acad Sci U S A ; 117(15): 8503-8514, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32234784

ABSTRACT

The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)-rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.


Subject(s)
Cell Nucleus/metabolism , Nuclear Localization Signals , Peptide Fragments/metabolism , RNA-Binding Proteins/metabolism , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Arginine/chemistry , Arginine/metabolism , Cytoplasm/metabolism , Glycine/chemistry , Glycine/metabolism , HeLa Cells , Humans , Peptide Fragments/chemistry , Protein Binding , Protein Conformation , RNA-Binding Proteins/chemistry , Serine/chemistry , Serine/metabolism , Tyrosine/chemistry , Tyrosine/metabolism , beta Karyopherins/chemistry
14.
BMC Bioinformatics ; 21(1): 36, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32000657

ABSTRACT

BACKGROUND: In methylation analyses like epigenome-wide association studies, a high amount of biomarkers is tested for an association between the measured continuous outcome and different covariates. In the case of a continuous covariate like smoking pack years (SPY), a measure of lifetime exposure to tobacco toxins, a spike at zero can occur. Hence, all non-smokers are generating a peak at zero, while the smoking patients are distributed over the other SPY values. Additionally, the spike might also occur on the right side of the covariate distribution, if a category "heavy smoker" is designed. Here, we will focus on methylation data with a spike at the left or the right of the distribution of a continuous covariate. After the methylation data is generated, analysis is usually performed by preprocessing, quality control, and determination of differentially methylated sites, often performed in pipeline fashion. Hence, the data is processed in a string of methods, which are available in one software package. The pipelines can distinguish between categorical covariates, i.e. for group comparisons or continuous covariates, i.e. for linear regression. The differential methylation analysis is often done internally by a linear regression without checking its inherent assumptions. A spike in the continuous covariate is ignored and can cause biased results. RESULTS: We have reanalysed five data sets, four freely available from ArrayExpress, including methylation data and smoking habits reported by smoking pack years. Therefore, we generated an algorithm to check for the occurrences of suspicious interactions between the values associated with the spike position and the non-spike positions of the covariate. Our algorithm helps to decide if a suspicious interaction can be found and further investigations should be carried out. This is mostly important, because the information on the differentially methylated sites will be used for post-hoc analyses like pathway analyses. CONCLUSIONS: We help to check for the validation of the linear regression assumptions in a methylation analysis pipeline. These assumptions should also be considered for machine learning approaches. In addition, we are able to detect outliers in the continuous covariate. Therefore, more statistical robust results should be produced in methylation analysis using our algorithm as a preprocessing step.


Subject(s)
DNA Methylation , Smoking/genetics , Adult , Algorithms , Analysis of Variance , Humans , Linear Models , Machine Learning , Middle Aged , Smoking/metabolism
15.
Clin Epigenetics ; 11(1): 105, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31331382

ABSTRACT

BACKGROUND: The oral mucosa has an important role in maintaining barrier integrity at the gateway to the gastrointestinal and respiratory tracts. Smoking is a strong environmental risk factor for the common oral inflammatory disease periodontitis and oral cancer. Cigarette smoke affects gene methylation and expression in various tissues. This is the first epigenome-wide association study (EWAS) that aimed to identify biologically active methylation marks of the oral masticatory mucosa that are associated with smoking. RESULTS: Ex vivo biopsies of 18 current smokers and 21 never smokers were analysed with the Infinium Methylation EPICBeadChip and combined with whole transcriptome RNA sequencing (RNA-Seq; 16 mio reads per sample) of the same samples. We analysed the associations of CpG methylation values with cigarette smoking and smoke pack year (SPY) levels in an analysis of covariance (ANCOVA). Nine CpGs were significantly associated with smoking status, with three CpGs mapping to the genetic region of CYP1B1 (cytochrome P450 family 1 subfamily B member 1; best p = 5.5 × 10-8) and two mapping to AHRR (aryl-hydrocarbon receptor repressor; best p = 5.9 × 10-9). In the SPY analysis, 61 CpG sites at 52 loci showed significant associations of the quantity of smoking with changes in methylation values. Here, the most significant association located to the gene CYP1B1, with p = 4.0 × 10-10. RNA-Seq data showed significantly increased expression of CYP1B1 in smokers compared to non-smokers (p = 2.2 × 10-14), together with 13 significantly upregulated transcripts. Six transcripts were significantly downregulated. No differential expression was observed for AHRR. In vitro studies with gingival fibroblasts showed that cigarette smoke extract directly upregulated the expression of CYP1B1. CONCLUSION: This study validated the established role of CYP1B1 and AHRR in xenobiotic metabolism of tobacco smoke and highlights the importance of epigenetic regulation for these genes. For the first time, we give evidence of this role for the oral masticatory mucosa.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cigarette Smoking/adverse effects , Cytochrome P-450 CYP1B1/genetics , Epigenomics/methods , Gene Expression Profiling/methods , Mouth Mucosa/chemistry , Repressor Proteins/genetics , Adult , Case-Control Studies , Cigarette Smoking/genetics , CpG Islands , DNA Methylation/drug effects , Epigenesis, Genetic , Female , Genome-Wide Association Study , Healthy Volunteers , Humans , Male , Middle Aged , Sequence Analysis, RNA , Smokers , Up-Regulation , Exome Sequencing
16.
Mol Cell ; 74(1): 73-87.e8, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30876805

ABSTRACT

The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Molecular Chaperones/metabolism , Peptide Chain Elongation, Translational , Peptide Elongation Factor 2/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Crystallography, X-Ray , Peptidyl-Prolyl Isomerase F , Cyclophilins/genetics , Cyclophilins/metabolism , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/genetics , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Nuclear Magnetic Resonance, Biomolecular , Peptide Elongation Factor 2/chemistry , Peptide Elongation Factor 2/genetics , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Structure-Activity Relationship
17.
Protein Sci ; 28(1): 176-190, 2019 01.
Article in English | MEDLINE | ID: mdl-30267443

ABSTRACT

The genome of the yeast Saccharomyces cerevisiae encodes a canonical lipoamide dehydrogenase (Lpd1p) as part of the pyruvate dehydrogenase complex and a highly similar protein termed Irc15p (increased recombination centers 15). In contrast to Lpd1p, Irc15p lacks a pair of redox active cysteine residues required for the reduction of lipoamide and thus it is very unlikely that Irc15p performs a similar dithiol-disulfide exchange reaction as reported for lipoamide dehydrogenases. We expressed IRC15 in Escherichia coli and purified the produced protein to conduct a detailed biochemical characterization. Here, we show that Irc15p is a dimeric protein with one FAD per protomer. Photoreduction of the protein generates the fully reduced hydroquinone without the occurrence of a flavin semiquinone radical. Similarly, reduction with NADH or NADPH yields the flavin hydroquinone without the occurrence of intermediates as observed for lipoamide dehydrogenase. The redox potential of Irc15p was -313 ± 1 mV and is thus similar to lipoamide dehydrogenase. Reduced Irc15p is oxidized by several artificial electron acceptors such as potassium ferricyanide, 2,6-dichlorophenol-indophenol, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, and menadione. However, disulfides such as cystine, glutathione, and lipoamide were unable to react with reduced Irc15p. Limited proteolysis and SAXS-measurements revealed that the NADH-dependent formation of hydrogen peroxide caused a substantial structural change in the dimeric protein. Therefore, we hypothesize that Irc15p undergoes a conformational change in the presence of elevated levels of hydrogen peroxide, which is a putative biomarker of oxidative stress. This conformational change may in turn modulate the interaction of Irc15p with other key players involved in regulating microtubule dynamics.


Subject(s)
Microtubules , Oxidative Stress , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Escherichia coli/enzymology , Escherichia coli/genetics , Microtubules/chemistry , Microtubules/genetics , Microtubules/metabolism , NAD/chemistry , NAD/metabolism , NADP/chemistry , NADP/metabolism , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
18.
Eur J Hum Genet ; 27(1): 102-113, 2019 01.
Article in English | MEDLINE | ID: mdl-30218097

ABSTRACT

Periodontitis is one of the most common inflammatory diseases, with a prevalence of 11% worldwide for the severe forms and an estimated heritability of 50%. It is classified into the widespread moderate form chronic periodontitis (CP) and the rare early-onset and severe phenotype aggressive periodontitis (AgP). These different disease manifestations are thought to share risk alleles and predisposing environmental factors. To obtain novel insights into the shared genetic etiology and the underlying molecular mechanisms of both forms, we performed a two step-wise meta-analysis approach using genome-wide association studies of both phenotypes. Genotypes from imputed genome-wide association studies (GWAS) of AgP and CP comprising 5,095 cases and 9,908 controls of North-West European genetic background were included. Two loci were associated with periodontitis at a genome-wide significance level. They located within the pseudogene MTND1P5 on chromosome 8 (rs16870060-G, P = 3.69 × 10-9, OR = 1.36, 95% CI = [1.23-1.51]) and intronic of the long intergenic non-coding RNA LOC107984137 on chromosome 16, downstream of the gene SHISA9 (rs729876-T, P = 9.77 × 10-9, OR = 1.24, 95% CI = [1.15-1.34]). This study identified novel risk loci of periodontitis, adding to the genetic basis of AgP and CP.


Subject(s)
Genetic Loci , Periodontitis/genetics , Polymorphism, Genetic , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 8/genetics , Genome-Wide Association Study , Humans
19.
Sci Rep ; 8(1): 13678, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30209331

ABSTRACT

Evidence for a shared genetic basis of association between coronary artery disease (CAD) and periodontitis (PD) exists. To explore the joint genetic basis, we performed a GWAS meta-analysis. In the discovery stage, we used a German aggressive periodontitis sample (AgP-Ger; 680 cases vs 3,973 controls) and the CARDIoGRAMplusC4D CAD meta-analysis dataset (60,801 cases vs 123,504 controls). Two SNPs at the known CAD risk loci ADAMTS7 (rs11634042) and VAMP8 (rs1561198) passed the pre-assigned selection criteria (PAgP-Ger < 0.05; PCAD < 5 × 10-8; concordant effect direction) and were replicated in an independent GWAS meta-analysis dataset of PD (4,415 cases vs 5,935 controls). SNP rs1561198 showed significant association (PD[Replication]: P = 0.008 OR = 1.09, 95% CI = [1.02-1.16]; PD [Discovery + Replication]: P = 0.0002, OR = 1.11, 95% CI = [1.05-1.17]). For the associated haplotype block, allele specific cis-effects on VAMP8 expression were reported. Our data adds to the shared genetic basis of CAD and PD and indicate that the observed association of the two disease conditions cannot be solely explained by shared environmental risk factors. We conclude that the molecular pathway shared by CAD and PD involves VAMP8 function, which has a role in membrane vesicular trafficking, and is manipulated by pathogens to corrupt host immune defense.


Subject(s)
Aggressive Periodontitis/genetics , Coronary Artery Disease/genetics , Genetic Predisposition to Disease/genetics , Case-Control Studies , Genome-Wide Association Study/methods , Haplotypes/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...