Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 54(2): 462-471, 2021 08.
Article in English | MEDLINE | ID: mdl-33719168

ABSTRACT

BACKGROUND: A definitive diagnosis of prostate cancer requires a biopsy to obtain tissue for pathologic analysis, but this is an invasive procedure and is associated with complications. PURPOSE: To develop an artificial intelligence (AI)-based model (named AI-biopsy) for the early diagnosis of prostate cancer using magnetic resonance (MR) images labeled with histopathology information. STUDY TYPE: Retrospective. POPULATION: Magnetic resonance imaging (MRI) data sets from 400 patients with suspected prostate cancer and with histological data (228 acquired in-house and 172 from external publicly available databases). FIELD STRENGTH/SEQUENCE: 1.5 to 3.0 Tesla, T2-weighted image pulse sequences. ASSESSMENT: MR images reviewed and selected by two radiologists (with 6 and 17 years of experience). The patient images were labeled with prostate biopsy including Gleason Score (6 to 10) or Grade Group (1 to 5) and reviewed by one pathologist (with 15 years of experience). Deep learning models were developed to distinguish 1) benign from cancerous tumor and 2) high-risk tumor from low-risk tumor. STATISTICAL TESTS: To evaluate our models, we calculated negative predictive value, positive predictive value, specificity, sensitivity, and accuracy. We also calculated areas under the receiver operating characteristic (ROC) curves (AUCs) and Cohen's kappa. RESULTS: Our computational method (https://github.com/ih-lab/AI-biopsy) achieved AUCs of 0.89 (95% confidence interval [CI]: [0.86-0.92]) and 0.78 (95% CI: [0.74-0.82]) to classify cancer vs. benign and high- vs. low-risk of prostate disease, respectively. DATA CONCLUSION: AI-biopsy provided a data-driven and reproducible way to assess cancer risk from MR images and a personalized strategy to potentially reduce the number of unnecessary biopsies. AI-biopsy highlighted the regions of MR images that contained the predictive features the algorithm used for diagnosis using the class activation map method. It is a fully automatic method with a drag-and-drop web interface (https://ai-biopsy.eipm-research.org) that allows radiologists to review AI-assessed MR images in real time. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Deep Learning , Prostatic Neoplasms , Radiology , Artificial Intelligence , Humans , Magnetic Resonance Imaging , Male , Prostatic Neoplasms/diagnostic imaging , Retrospective Studies
2.
Bioinformatics ; 37(3): 326-333, 2021 04 20.
Article in English | MEDLINE | ID: mdl-32805010

ABSTRACT

MOTIVATION: In recent years, the well-known Infinite Sites Assumption has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions. However, recent studies leveraging single-cell sequencing (SCS) techniques have shown evidence of the widespread recurrence and, especially, loss of mutations in several tumor samples. While there exist established computational methods that infer phylogenies with mutation losses, there remain some advancements to be made. RESULTS: We present Simulated Annealing Single-Cell inference (SASC): a new and robust approach based on simulated annealing for the inference of cancer progression from SCS datasets. In particular, we introduce an extension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of mutation loss in the evolutionary history of the tumor: the Dollo-k model. We demonstrate that SASC achieves high levels of accuracy when tested on both simulated and real datasets and in comparison with some other available methods. AVAILABILITY AND IMPLEMENTATION: The SASC tool is open source and available at https://github.com/sciccolella/sasc. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Neoplasms , Single-Cell Analysis , Humans , Mutation , Neoplasms/genetics , Phylogeny , Sequence Analysis , Software
4.
Nat Biotechnol ; 38(11): 1347-1355, 2020 11.
Article in English | MEDLINE | ID: mdl-32541955

ABSTRACT

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution and comprehensiveness. To help translate these methods to routine research and clinical practice, we developed a sequence-resolved benchmark set for identification of both false-negative and false-positive germline large insertions and deletions. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle Consortium integrated 19 sequence-resolved variant calling methods from diverse technologies. The final benchmark set contains 12,745 isolated, sequence-resolved insertion (7,281) and deletion (5,464) calls ≥50 base pairs (bp). The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.51 Gbp and 5,262 insertions and 4,095 deletions supported by ≥1 diploid assembly. We demonstrate that the benchmark set reliably identifies false negatives and false positives in high-quality SV callsets from short-, linked- and long-read sequencing and optical mapping.


Subject(s)
Germ-Line Mutation/genetics , INDEL Mutation/genetics , Diploidy , Genomic Structural Variation , Humans , Molecular Sequence Annotation , Sequence Analysis, DNA
5.
Genome Biol ; 21(1): 72, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32192518

ABSTRACT

Most existing methods for structural variant detection focus on discovery and genotyping of deletions, insertions, and mobile elements. Detection of balanced structural variants with no gain or loss of genomic segments, for example, inversions and translocations, is a particularly challenging task. Furthermore, there are very few algorithms to predict the insertion locus of large interspersed segmental duplications and characterize translocations. Here, we propose novel algorithms to characterize large interspersed segmental duplications, inversions, deletions, and translocations using linked-read sequencing data. We redesign our earlier algorithm, VALOR, and implement our new algorithms in a new software package, called VALOR2.


Subject(s)
Algorithms , Genomic Structural Variation , Software , Chromosome Duplication , Chromosome Inversion , Cluster Analysis , Humans , Sequence Deletion , Translocation, Genetic
6.
Bioinformatics ; 36(4): 1082-1090, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31584621

ABSTRACT

MOTIVATION: We propose Meltos, a novel computational framework to address the challenging problem of building tumor phylogeny trees using somatic structural variants (SVs) among multiple samples. Meltos leverages the tumor phylogeny tree built on somatic single nucleotide variants (SNVs) to identify high confidence SVs and produce a comprehensive tumor lineage tree, using a novel optimization formulation. While we do not assume the evolutionary progression of SVs is necessarily the same as SNVs, we show that a tumor phylogeny tree using high-quality somatic SNVs can act as a guide for calling and assigning somatic SVs on a tree. Meltos utilizes multiple genomic read signals for potential SV breakpoints in whole genome sequencing data and proposes a probabilistic formulation for estimating variant allele fractions (VAFs) of SV events. RESULTS: In order to assess the ability of Meltos to correctly refine SNV trees with SV information, we tested Meltos on two simulated datasets with five genomes in both. We also assessed Meltos on two real cancer datasets. We tested Meltos on multiple samples from a liposarcoma tumor and on a multi-sample breast cancer data (Yates et al., 2015), where the authors provide validated structural variation events together with deep, targeted sequencing for a collection of somatic SNVs. We show Meltos has the ability to place high confidence validated SV calls on a refined tumor phylogeny tree. We also showed the flexibility of Meltos to either estimate VAFs directly from genomic data or to use copy number corrected estimates. AVAILABILITY AND IMPLEMENTATION: Meltos is available at https://github.com/ih-lab/Meltos. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neoplasms , Genome , Genomic Structural Variation , Genomics , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/genetics , Phylogeny , Sequence Analysis , Software
7.
Genome Res ; 29(11): 1860-1877, 2019 11.
Article in English | MEDLINE | ID: mdl-31628256

ABSTRACT

Available computational methods for tumor phylogeny inference via single-cell sequencing (SCS) data typically aim to identify the most likely perfect phylogeny tree satisfying the infinite sites assumption (ISA). However, the limitations of SCS technologies including frequent allele dropout and variable sequence coverage may prohibit a perfect phylogeny. In addition, ISA violations are commonly observed in tumor phylogenies due to the loss of heterozygosity, deletions, and convergent evolution. In order to address such limitations, we introduce the optimal subperfect phylogeny problem which asks to integrate SCS data with matching bulk sequencing data by minimizing a linear combination of potential false negatives (due to allele dropout or variance in sequence coverage), false positives (due to read errors) among mutation calls, and the number of mutations that violate ISA (real or because of incorrect copy number estimation). We then describe a combinatorial formulation to solve this problem which ensures that several lineage constraints imposed by the use of variant allele frequencies (VAFs, derived from bulk sequence data) are satisfied. We express our formulation both in the form of an integer linear program (ILP) and-as a first in tumor phylogeny reconstruction-a Boolean constraint satisfaction problem (CSP) and solve them by leveraging state-of-the-art ILP/CSP solvers. The resulting method, which we name PhISCS, is the first to integrate SCS and bulk sequencing data while accounting for ISA violating mutations. In contrast to the alternative methods, typically based on probabilistic approaches, PhISCS provides a guarantee of optimality in reported solutions. Using simulated and real data sets, we demonstrate that PhISCS is more general and accurate than all available approaches.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Phylogeny , Single-Cell Analysis/methods , Humans , Neoplasms/pathology
8.
Curr Protoc Bioinformatics ; 62(1): e49, 2018 06.
Article in English | MEDLINE | ID: mdl-29927069

ABSTRACT

The reconstruction of cancer phylogeny trees and quantifying the evolution of the disease is a challenging task. LICHeE and BAMSE are two computational tools designed and implemented recently for this purpose. They both utilize estimated variant allele fraction of somatic mutations across multiple samples to infer the most likely cancer phylogenies. This unit provides extensive guidelines for installing and running both LICHeE and BAMSE. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Algorithms , Computational Biology/methods , Neoplasms/genetics , Phylogeny , Humans
9.
J Clin Microbiol ; 55(1): 244-252, 2017 01.
Article in English | MEDLINE | ID: mdl-27847370

ABSTRACT

Despite attempts to control avian mycoplasmosis through management, vaccination, and surveillance, Mycoplasma gallisepticum continues to cause significant morbidity, mortality, and economic losses in poultry production. Live attenuated vaccines are commonly used in the poultry industry to control avian mycoplasmosis; unfortunately, some vaccines may revert to virulence and vaccine strains are generally difficult to distinguish from natural field isolates. In order to identify genome differences among vaccine revertants, vaccine strains, and field isolates, whole-genome sequencing of the M. gallisepticum vaccine strain ts-11 and several "ts-11-like" strains isolated from commercial flocks was performed using Illumina and 454 pyrosequencing and the sequenced genomes compared to the M. gallisepticum Rlow reference genome. The collective contigs for each strain were annotated using the fully annotated Mycoplasma reference genome. The analysis revealed genetic differences among vlhA alleles, as well as among genes annotated as coding for a cell wall surface anchor protein (mg0377) and a hypothetical protein gene, mg0359, unique to M. gallisepticum ts-11 vaccine strain. PCR protocols were designed to target 5 sequences unique to the M. gallisepticum ts-11 strain: vlhA3.04a, vlhA3.04b, vlhA3.05, mg0377, and mg0359 All ts-11 isolates were positive for the five gene alleles tested by PCR; however, 5 to 36% of field isolates were also positive for at least one of the alleles tested. A combination of PCR tests for vlhA3.04a, vlhA3.05, and mg0359 was able to distinguish the M. gallisepticum ts-11 vaccine strain from field isolates. This method will further supplement current approaches to quickly distinguish M. gallisepticum vaccine strains from field isolates.


Subject(s)
Bacterial Vaccines/genetics , DNA, Bacterial/genetics , Genetic Variation , Mycoplasma Infections/veterinary , Mycoplasma gallisepticum/genetics , Poultry Diseases/microbiology , Sequence Analysis, DNA , Animals , Bacterial Vaccines/adverse effects , Bacteriological Techniques/methods , Diagnosis, Differential , Genes, Bacterial , Genome, Bacterial , Mycoplasma Infections/microbiology , Polymerase Chain Reaction/methods , Poultry , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics , Veterinary Medicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...