Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chin J Cancer Res ; 30(5): 564-567, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30510368

ABSTRACT

The search for cancer biomarkers is frequently based on comparisons between tumors and adjacent-to-tumor samples. However, even after histological confirmation of been free of cancer cells, these adjacent-to-tumor samples might harbor molecular alterations which are not sufficient to cause them to look like cancer, but can differentiate these cells from normal cells. When comparing them, potential biomarkers are missed, and mainly the opportunity of finding initial aberrations presents in both tumors and adjacent samples, but not in true normal samples from non-cancer patients, resulting in misinterpretations about the carcinogenic process. Nevertheless, collecting adjacent-to-tumor samples brings trumps to be explored. The addition of samples from non-cancer patients opens an opportunity to increase the finds of the molecular cascade of events in the carcinogenic process. Differences between normal samples and adjacent samples might represent the first steps of the carcinogenic process. Adding samples of non-cancer patients to the analysis of molecular alterations relevant to the carcinogenic process opens a new window of opportunities to the discovery of cancer biomarkers and molecular targets.

2.
Oncotarget ; 8(61): 104286-104294, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29262640

ABSTRACT

The 7th edition of Union for International Cancer Control (UICC) staging system moved gastroesophageal junction (GEJ) cancers from gastric to esophageal group. Since clinical management is strongly influenced by this staging system, we looked at molecular fingerprints of GEJ tumors and compared to gastric and esophageal profiles. We aimed at elucidating whether GEJ cancers cluster with gastric or esophageal groups according to mRNA and microRNA expression pattern, since this might represent tumor identity. The clinical and expression data were downloaded from The Cancer Genome Atlas (TCGA) with 395 stomach, 184 esophagus and 521 colon samples for mRNA analyses and 392 stomach, 175 esophagus and 459 colon samples for microRNA comparisons. Both Principal Component Analysis (PCA) and Heat Map plots were performed in R platform, using Log2 transformation of RPKM normalized data. Differential Expression Analysis was also performed in R, using RAW data and the DESeq2 package. The mRNAs and microRNAs were tagged as differentially expressed if they met the following criteria: i) FDR adjusted p-value < 0.05; and ii) |Log2 (fold-change)| > 2. Esophagus squamous cell carcinoma (ESCC) clustered apart of the others tumors, while adenocarcinomas (AC) clustered all together according to both mRNAs and microRNAs expression patterns. The HMs of the differentially expressed mRNAs and microRNAs also demonstrated that ESCC belongs to a different group, while AC molecular signature of esophagus looks like AC of the cardia and non cardia regions. Even distal gastric cancers are quite similar to AC of the lower esophagus, demonstrating that esophagus AC relies much closer to gastric cancers than to esophagus cancers. By using robust molecular fingerprints, it was strongly demonstrated that GEJ tumors looks more like gastric cancers than esophageal cancers, despite of tumor heterogeneity.

3.
Epigenomics ; 7(6): 975-84, 2015.
Article in English | MEDLINE | ID: mdl-25929784

ABSTRACT

Epigenetic mechanisms work in an orchestrated fashion to control gene expression in both homeostasis and diseases. Among small noncoding RNAs, piRNAs seem to meet the necessary requirements to be included in this epigenetic network due to their role in both transcriptional and post-transcriptional regulation. piRNAs and PIWI proteins might play important roles in cancer occurrence, prognosis and treatment as reported previously. Nevertheless, the potential clinical relevance of these molecules has yet been elucidated. A brief overview of piRNA biogenesis and their potential roles as part of an epigenetic network that is possibly involved in cancer is provided. Moreover, potential strategies based on the use of piRNAs and PIWI proteins as diagnostic and prognostic biomarkers as well as for cancer therapeutics are discussed.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA, Small Interfering/genetics , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Biomarkers , Epigenesis, Genetic , Epigenomics , Gene Expression Profiling , Humans , MicroRNAs/genetics , Molecular Targeted Therapy , Neoplasms/diagnosis , Neoplasms/therapy , Organ Specificity/genetics , Prognosis , RNA Interference , RNA, Untranslated/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL