Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Biophys Rep (N Y) ; : 100167, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909903

ABSTRACT

Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. Additionally, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from non-coding ones in otherwise ambiguous cases.

2.
Nucleic Acids Res ; 52(10): e48, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38726866

ABSTRACT

Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.


Subject(s)
RNA-Binding Proteins , RNA , Humans , Binding Sites , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Immunoprecipitation , Levivirus/genetics , Levivirus/metabolism , Mutation , Nucleic Acid Conformation , Protein Binding , RNA/metabolism , RNA/chemistry , RNA/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/chemistry , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Telomerase/metabolism , Telomerase/genetics , Models, Statistical
3.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659920

ABSTRACT

Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. Additionally, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from non-coding ones in otherwise ambiguous cases.

4.
STAR Protoc ; 4(4): 102731, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37980569

ABSTRACT

Association studies describe genetic associations between noncoding variants and disease susceptibility; however, they do not provide functional insight into the underlying molecular mechanisms of these variants. We present a protocol to assay the regulatory potential of thousands of noncoding variants using massively parallel reporter assays. We describe steps for oligo design, generating a plasmid pool, and extracting tag-seq libraries from cells to quantify the tested sequences. For complete details on the use and execution of this protocol, please refer to Oliveros and Delfosse et al.1.


Subject(s)
Plasmids , Plasmids/genetics
5.
bioRxiv ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37645830

ABSTRACT

Polycomb Repressive Complex 2 (PRC2), an important histone modifier and epigenetic repressor, has been known to interact with RNA for almost two decades. In our previous publication (Long, Hwang et al. 2020), we presented data supporting the functional importance of RNA interaction in maintaining PRC2 occupancy on chromatin, using comprehensive approaches including an RNA-binding mutant of PRC2 and an rChIP-seq assay. Recently, concerns have been expressed regarding whether the RNA-binding mutant has impaired histone methyltransferase activity and whether the rChIP-seq assay can potentially generate artifacts. Here we provide new data that support a number of our original findings. First, we found the RNA-binding mutant to be fully capable of maintaining H3K27me3 levels in human induced pluripotent stem cells. The mutant had reduced methyltransferase activity in vitro, but only on some substrates at early time points. Second, we found that our rChIP-seq method gave consistent data across antibodies and cell lines. Third, we further optimized rChIP-seq by using lower concentrations of RNase A and incorporating a catalytically inactive mutant RNase A as a control, as well as using an alternative RNase (RNase T1). The EZH2 rChIP-seq results using the optimized protocols supported our original finding that RNA interaction contributes to the chromatin occupancy of PRC2.

6.
Nat Commun ; 14(1): 3866, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391481

ABSTRACT

Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , RNA, Long Noncoding , Animals , Hemorrhagic Fever, Ebola/genetics , RNA, Long Noncoding/genetics , Macaca mulatta , Ebolavirus/genetics , Virus Internalization
7.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Article in English | MEDLINE | ID: mdl-36596869

ABSTRACT

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , Cell Nucleus/genetics , Chromatin/genetics , Regulatory Sequences, Nucleic Acid , RNA Polymerase II/genetics
8.
Elife ; 122023 01 31.
Article in English | MEDLINE | ID: mdl-36719724

ABSTRACT

Long non-coding RNAs (lncRNAs) have emerged as fundamental regulators in various biological processes, including embryonic development and cellular differentiation. Despite much progress over the past decade, the genome-wide annotation of lncRNAs remains incomplete and many known non-coding loci are still poorly characterized. Here, we report the discovery of a previously unannotated lncRNA that is transcribed 230 kb upstream of the SOX17 gene and located within the same topologically associating domain. We termed it T-REX17 (Transcript Regulating Endoderm and activated by soX17) and show that it is induced following SOX17 activation but its expression is more tightly restricted to early definitive endoderm. Loss of T-REX17 affects crucial functions independent of SOX17 and leads to an aberrant endodermal transcriptome, signaling pathway deregulation and epithelial to mesenchymal transition defects. Consequently, cells lacking the lncRNA cannot further differentiate into more mature endodermal cell types. Taken together, our study identified and characterized T-REX17 as a transiently expressed and essential non-coding regulator in early human endoderm differentiation.


Subject(s)
RNA, Long Noncoding , Pregnancy , Female , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Epithelial-Mesenchymal Transition , Endoderm , Gene Expression Regulation, Developmental , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Cell Differentiation/genetics
9.
RNA ; 29(3): 346-360, 2023 03.
Article in English | MEDLINE | ID: mdl-36574982

ABSTRACT

Aberrant DNA methylation is one of the earliest hallmarks of cancer. DNMT1 is responsible for methylating newly replicated DNA, but the precise regulation of DNMT1 to ensure faithful DNA methylation remains poorly understood. A link between RNA and chromatin-associated proteins has recently emerged, and several studies have shown that DNMT1 can be regulated by a variety of RNAs. In this study, we have confirmed that human DNMT1 indeed interacts with multiple RNAs, including its own nuclear mRNA. Unexpectedly, we found that DNMT1 exhibits a strong and specific affinity for GU-rich RNAs that form a pUG-fold, a noncanonical G-quadruplex. We find that pUG-fold-capable RNAs inhibit DNMT1 activity by inhibiting binding of hemimethylated DNA, and we additionally provide evidence for multiple RNA binding modes with DNMT1. Together, our data indicate that a human chromatin-associated protein binds to and is regulated by pUG-fold RNA.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , Nucleic Acid Conformation , RNA , Humans , Chromatin/metabolism , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , RNA/genetics , RNA/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferase 1/metabolism
10.
Cell Genom ; 3(12): 100440, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38169842

ABSTRACT

Ebola virus (EBOV) causes Ebola virus disease (EVD), marked by severe hemorrhagic fever; however, the mechanisms underlying the disease remain unclear. To assess the molecular basis of EVD across time, we performed RNA sequencing on 17 tissues from a natural history study of 21 rhesus monkeys, developing new methods to characterize host-pathogen dynamics. We identified alterations in host gene expression with previously unknown tissue-specific changes, including downregulation of genes related to tissue connectivity. EBOV was widely disseminated throughout the body; using a new, broadly applicable deconvolution method, we found that viral load correlated with increased monocyte presence. Patterns of viral variation between tissues differentiated primary infections from compartmentalized infections, and several variants impacted viral fitness in a EBOV/Kikwit minigenome system, suggesting that functionally significant variants can emerge during early infection. This comprehensive portrait of host-pathogen dynamics in EVD illuminates new features of pathogenesis and establishes resources to study other emerging pathogens.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Hemorrhagic Fevers, Viral , Animals , Hemorrhagic Fever, Ebola/pathology , Macaca mulatta , Ebolavirus/genetics
11.
Skelet Muscle ; 12(1): 20, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35971133

ABSTRACT

BACKGROUND: The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation. METHODS: We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions. RESULTS: Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes. CONCLUSIONS: Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.


Subject(s)
Muscle Development , Myoblasts , Cell Differentiation/physiology , Chromatin/genetics , Muscle Fibers, Skeletal , Stem Cells
12.
Curr Opin Genet Dev ; 76: 101969, 2022 10.
Article in English | MEDLINE | ID: mdl-35998472

Subject(s)
Genome , Genome/genetics
14.
RNA ; 28(6): 842-853, 2022 06.
Article in English | MEDLINE | ID: mdl-35304421

ABSTRACT

Long noncoding RNAs (lncRNAs) are rapidly evolving and thus typically poorly conserved in their sequences. How these sequence differences affect the characteristics and potential functions of lncRNAs with shared synteny remains unclear. Here we show that the syntenically conserved lncRNA Firre displays distinct expression and localization patterns in human and mouse. Single molecule RNA FISH reveals that in a range of cell lines, mouse Firre (mFirre) is predominantly nuclear, while human FIRRE (hFIRRE) is distributed between the cytoplasm and nucleus. This localization pattern is maintained in human/mouse hybrid cells expressing both human and mouse Firre, implying that the localization of the lncRNA is species autonomous. We find that the majority of hFIRRE transcripts in the cytoplasm are comprised of isoforms that are enriched in RRD repeats. We furthermore determine that in various tissues, mFirre is more highly expressed than its human counterpart. Our data illustrate that the rapid evolution of syntenic lncRNAs can lead to variations in lncRNA localization and abundance, which in turn may result in disparate lncRNA functions even in closely related species.


Subject(s)
RNA, Long Noncoding , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/metabolism , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
15.
Elife ; 112022 02 18.
Article in English | MEDLINE | ID: mdl-35179489

ABSTRACT

The human endogenous retrovirus type-H (HERVH) family is expressed in the preimplantation embryo. A subset of these elements are specifically transcribed in pluripotent stem cells where they appear to exert regulatory activities promoting self-renewal and pluripotency. How HERVH elements achieve such transcriptional specificity remains poorly understood. To uncover the sequence features underlying HERVH transcriptional activity, we performed a phyloregulatory analysis of the long terminal repeats (LTR7) of the HERVH family, which harbor its promoter, using a wealth of regulatory genomics data. We found that the family includes at least eight previously unrecognized subfamilies that have been active at different timepoints in primate evolution and display distinct expression patterns during human embryonic development. Notably, nearly all HERVH elements transcribed in ESCs belong to one of the youngest subfamilies we dubbed LTR7up. LTR7 sequence evolution was driven by a mixture of mutational processes, including point mutations, duplications, and multiple recombination events between subfamilies, that led to transcription factor binding motif modules characteristic of each subfamily. Using a reporter assay, we show that one such motif, a predicted SOX2/3 binding site unique to LTR7up, is essential for robust promoter activity in induced pluripotent stem cells. Together these findings illuminate the mechanisms by which HERVH diversified its expression pattern during evolution to colonize distinct cellular niches within the human embryo.


Subject(s)
Endogenous Retroviruses , Pluripotent Stem Cells , Animals , Endogenous Retroviruses/genetics , Genomics , Humans , Primates/genetics , Terminal Repeat Sequences/genetics
16.
Nat Rev Genet ; 23(4): 229-243, 2022 04.
Article in English | MEDLINE | ID: mdl-34837040

ABSTRACT

Genome-wide sequencing has led to the discovery of thousands of long non-coding RNA (lncRNA) loci in the human genome, but evidence of functional significance has remained controversial for many lncRNAs. Genetically engineered model organisms are considered the gold standard for linking genotype to phenotype. Recent advances in CRISPR-Cas genome editing have led to a rapid increase in the use of mouse models to more readily survey lncRNAs for functional significance. Here, we review strategies to investigate the physiological relevance of lncRNA loci by highlighting studies that have used genetic mouse models to reveal key in vivo roles for lncRNAs, from fertility to brain development. We illustrate how an investigative approach, starting with whole-gene deletion followed by transcription termination and/or transgene rescue strategies, can provide definitive evidence for the in vivo function of mammalian lncRNAs.


Subject(s)
RNA, Long Noncoding , Animals , Gene Editing , Genome, Human , Genotype , Humans , Mammals/genetics , Mice , Phenotype , RNA, Long Noncoding/genetics
17.
Dev Cell ; 56(21): 2995-3005.e4, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34752748

ABSTRACT

Genomic imprinting and X chromosome inactivation (XCI) require epigenetic mechanisms to encode allele-specific expression, but how these specific tasks are accomplished at single loci or across chromosomal scales remains incompletely understood. Here, we systematically disrupt essential epigenetic pathways within polymorphic embryos in order to examine canonical and non-canonical genomic imprinting as well as XCI. We find that DNA methylation and Polycomb group repressors are indispensable for autosomal imprinting, albeit at distinct gene sets. Moreover, the extraembryonic ectoderm relies on a broader spectrum of imprinting mechanisms, including non-canonical targeting of maternal endogenous retrovirus (ERV)-driven promoters by the H3K9 methyltransferase G9a. We further identify Polycomb-dependent and -independent gene clusters on the imprinted X chromosome, which appear to reflect distinct domains of Xist-mediated suppression. From our data, we assemble a comprehensive inventory of the epigenetic pathways that maintain parent-specific imprinting in eutherian mammals, including an expanded view of the placental lineage.


Subject(s)
Cell Lineage/physiology , Ectoderm/metabolism , Genomic Imprinting/genetics , Placenta/metabolism , Animals , DNA Methylation/physiology , Epigenesis, Genetic/genetics , Female , Histones/metabolism , Mice , Pregnancy , RNA, Long Noncoding/genetics
18.
Ann N Y Acad Sci ; 1506(1): 118-141, 2021 12.
Article in English | MEDLINE | ID: mdl-34791665

ABSTRACT

The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.


Subject(s)
Congresses as Topic/trends , Epigenesis, Genetic/genetics , Gene Targeting/trends , RNA, Untranslated/administration & dosage , RNA, Untranslated/genetics , Research Report , Animals , Drug Delivery Systems/methods , Drug Delivery Systems/trends , Gene Targeting/methods , Humans , MicroRNAs/administration & dosage , MicroRNAs/genetics , RNA, Long Noncoding/administration & dosage , RNA, Long Noncoding/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Small Untranslated/administration & dosage , RNA, Small Untranslated/genetics , Signal Transduction/genetics
19.
PLoS One ; 16(11): e0252848, 2021.
Article in English | MEDLINE | ID: mdl-34731163

ABSTRACT

Although many long non-coding RNAs (lncRNAs) exhibit lineage-specific expression, the vast majority remain functionally uncharacterized in the context of development. Here, we report the first described human embryonic stem cell (hESC) lines to repress (CRISPRi) or activate (CRISPRa) transcription during differentiation into all three germ layers, facilitating the modulation of lncRNA expression during early development. We performed an unbiased, genome-wide CRISPRi screen targeting thousands of lncRNA loci expressed during endoderm differentiation. While dozens of lncRNA loci were required for proper differentiation, most differentially expressed lncRNAs were not, supporting the necessity for functional screening instead of relying solely on gene expression analyses. In parallel, we developed a clustering approach to infer mechanisms of action of lncRNA hits based on a variety of genomic features. We subsequently identified and validated FOXD3-AS1 as a functional lncRNA essential for pluripotency and differentiation. Taken together, the cell lines and methodology described herein can be adapted to discover and characterize novel regulators of differentiation into any lineage.


Subject(s)
Cell Differentiation/genetics , CRISPR-Cas Systems , Forkhead Transcription Factors/genetics , Humans , RNA Interference , RNA, Long Noncoding
SELECTION OF CITATIONS
SEARCH DETAIL
...