Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(16)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781544

ABSTRACT

The increasing number of Alzheimer's disease (AD) cases requires the development of new improved drug candidates, possessing the ability of more efficient treatment as well as less unwanted side effects. Cholinesterase enzymes are highly associated with the development of AD and thus represent important druggable targets. Therefore, we have synthesized eight organoruthenium(II) chlorido complexes 1a-h with pyrithione-type ligands (pyrithione = 1-hydroxypyridine-2(1H)-thione, a), bearing either pyrithione a, its methyl (b-e) or bicyclic aromatic analogues (f-h) and tested them for their inhibition towards electric eel acetylcholinesterase (eeAChE) and horse serum butyrylcholinesterase (hsBuChE). The experimental results have shown that the novel complex 1g with the ligand 1-hydroxyquinoline-2-(1H)-thione (g) improves the inhibition towards eeAChE (IC50 = 4.9 µM) and even more potently towards hsBuChE (IC50 = 0.2 µM) in comparison with the referenced 1a. Moreover, computational studies on Torpedo californica AChE have supported the experimental outcomes for 1g, possessing the lowest energy value among all tested complexes and have also predicted several interactions of 1g with the target protein. Consequently, we have shown that the aromatic ring extension of the ligand a, though only at the appropriate position, is a viable strategy to enhance the activity against cholinesterases.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Coordination Complexes/pharmacology , Lipids/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Ruthenium/pharmacology , Thiones/chemistry , Thiones/pharmacology , Animals , Crystallization , Electrophorus , Enzyme Assays , Horses , Inhibitory Concentration 50 , Isomerism , Ligands , Molecular Docking Simulation , Spectrometry, Mass, Electrospray Ionization
2.
ChemMedChem ; 13(20): 2166-2176, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30126080

ABSTRACT

A small library of 17 organoruthenium compounds with the general formula [RuII (fcl)(chel)(L)]n+ (in which fcl=face capping ligand, chel=chelating bidentate ligand, and L=monodentate ligand) were screened for inhibitory activity against cholinesterases and glutathione-S-transferases of human and animal origins. Compounds were selected to include different chelating ligands (i.e., N,N-, N,O-, O,O-, S,O-) and monodentate ligands that can modulate the aquation rate of the metal species. Compounds with a labile ruthenium chloride bond that provided rapid aquation were found to inhibit both sets of enzymes in reversible competitive modes and at pharmaceutically relevant concentrations. When applied at concentrations that completely abolish the activity of human acetylcholinesterase, the lead compound [(η6 -p-cymene)Ru(pyrithionato)Cl] (C1 a) showed no undesirable physiological responses on the neuromuscular system. Finally, C1 a was not cytotoxic against non-transformed cells at pharmaceutically relevant concentrations.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Coordination Complexes/pharmacology , Glutathione Transferase/antagonists & inhibitors , Prodrugs/pharmacology , Ruthenium/chemistry , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/metabolism , Cell Line , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/toxicity , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Diaphragm/drug effects , Electrophorus , Horses , Humans , Membrane Potentials/drug effects , Mice , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/toxicity , Small Molecule Libraries
SELECTION OF CITATIONS
SEARCH DETAIL