Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38894083

ABSTRACT

In this study, we analyze the CSMA Non-Persistent protocol with a finite number of nodes, providing more accurate results for applications like wireless sensor networks. The finite model addresses scenarios where the node count is moderate, capturing realistic system dynamics. Our analysis reveals a dependency on the node count, impacting system throughput. As the node count increases, throughput behavior aligns with Kleinrock's infinite model. We derive a complex closed-form throughput expression for a finite quantity of nodes in the system, solved numerically, and offer an approximate expression for specific conditions. These insights advance understanding of low-contention network performance, especially in scenarios where the infinite model becomes inadequate.

2.
Sensors (Basel) ; 24(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38610236

ABSTRACT

The reliability and scalability of Linear Wireless Sensor Networks (LWSNs) are limited by the high packet loss probabilities (PLP) experienced by the packets generated at nodes far from the sink node. This is an important limitation in Smart City applications, where timely data collection is critical for decision making. Unfortunately, previous works have not addressed this problem and have only focused on improving the network's overall performance. In this work, we propose a Distance-Based Queuing (DBQ) scheme that can be incorporated into MAC protocols for LWSNs to improve reliability and scalability without requiring extra local processing or additional signaling at the nodes. The DBQ scheme prioritizes the transmission of relay packets based on their hop distance to the sink node, ensuring that all packets experience the same PLP. To evaluate the effectiveness of our proposal, we developed an analytical model and conducted extensive discrete-event simulations. Our numerical results demonstrate that the DBQ scheme significantly improves the reliability and scalability of the network by achieving the same average PLP and throughput for all nodes, regardless of traffic intensities and network sizes.

3.
Entropy (Basel) ; 23(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802131

ABSTRACT

In the context of smart cities, there is a general benefit from monitoring close encounters among pedestrians. For instance, for the access control to office buildings, subway, commercial malls, etc., where a high amount of users may be present simultaneously, and keeping a strict record on each individual may be challenging. GPS tracking may not be available in many indoor cases; video surveillance may require expensive deployment (mainly due to the high-quality cameras and face recognition algorithms) and can be restrictive in case of low budget applications; RFID systems can be cumbersome and limited in the detection range. This information can later be used in many different scenarios. For instance, in case of earthquakes, fires, and accidents in general, the administration of the buildings can have a clear record of the people inside for victim searching activities. However, in the pandemic derived from the COVID-19 outbreak, a tracking that allows detecting of pedestrians in close range (a few meters) can be particularly useful to control the virus propagation. Hence, we propose a mobile clustering scheme where only a selected number of pedestrians (Cluster Heads) collect the information of the people around them (Cluster Members) in their trajectory inside the area of interest. Hence, a small number of transmissions are made to a control post, effectively limiting the collision probability and increasing the successful registration of people in close contact. Our proposal shows an increased success packet transmission probability and a reduced collision and idle slot probability, effectively improving the performance of the system compared to the case of direct transmissions from each node.

4.
Sensors (Basel) ; 17(12)2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29236065

ABSTRACT

Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.

SELECTION OF CITATIONS
SEARCH DETAIL
...