Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Org Chem ; 82(21): 11464-11473, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28960986

ABSTRACT

The mechanism of the Ullmann-type reaction between potassium thioacetate (KSAc) and iodobenzene (PhI) catalyzed by CuI associated with 1,10-phenanthroline (phen) as a ligand was explored experimentally and computationally. The study on C-S bond formation was investigated by UV-visible spectrophotometry, cyclic voltammetry, mass spectrometry, and products assessment from radical probes. The results indicate that under experimental conditions the catalytically active species is [Cu(phen)(SAc)] regardless of the copper source. An examination of the aryl halide activation mechanism using radical probes was undertaken. No evidence of the presence of radical species was found during the reaction process, which is consistent with an oxidative addition cross-coupling pathway. The different reaction pathways leading to the experimentally observed reaction products were studied by DFT calculation. The oxidative addition-reductive elimination mechanism via an unstable CuIII intermediate is energetically more feasible than other possible mechanisms such as single electron transfer, halogen atom transfer, and σ-bond methatesis.

2.
J Org Chem ; 80(5): 2733-9, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25686007

ABSTRACT

Photodeprotection of 1,3-dithianes in the presence of thiapyrylium was performed to return to the parent carbonyl compound, and the mechanism was studied by steady state photolysis, laser flash photolysis, and theoretical calculations. Electron transfer from dithianes to triplet sensitizers is extremely fast, and the decay of dithiane radical cations was not affected by the presence of water or oxygen as the consequence of a favorable unimolecular fragmentation pathway. Similar behaviors were observed for dithianes bearing electron-releasing or electron-withdrawing substituents on the aryl moiety, evidenced by C-S bond cleavage to form a distonic radical cation species. The lack of reaction under nitrogen atmosphere, requirement of oxygen for good conversion yields, inhibition of the photodeprotection process by the presence of p-benzoquinone, and absence of a labeled carbonyl final product when the reaction is performed in the presence of H2(18)O all suggest that the superoxide anion drives the deprotection reaction. Density functional theory computational studies on the reactions with water, molecular oxygen, and the superoxide radical anion support the experimental findings.


Subject(s)
Benzoquinones/chemistry , Heterocyclic Compounds/chemistry , Superoxides/chemistry , Electron Transport , Free Radicals/chemistry , Light , Molecular Structure , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL