Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1583, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383515

ABSTRACT

Peripheral T cell lymphomas are typically aggressive with a poor prognosis. Unlike other hematologic malignancies, the lack of target antigens to discriminate healthy from malignant cells limits the efficacy of immunotherapeutic approaches. The T cell receptor expresses one of two highly homologous chains [T cell receptor ß-chain constant (TRBC) domains 1 and 2] in a mutually exclusive manner, making it a promising target. Here we demonstrate specificity redirection by rational design using structure-guided computational biology to generate a TRBC2-specific antibody (KFN), complementing the antibody previously described by our laboratory with unique TRBC1 specificity (Jovi-1) in targeting broader spectrum of T cell malignancies clonally expressing either of the two chains. This permits generation of paired reagents (chimeric antigen receptor-T cells) specific for TRBC1 and TRBC2, with preclinical evidence to support their efficacy in T cell malignancies.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Immunotherapy , Receptors, Antigen, T-Cell
3.
Front Immunol ; 14: 1119350, 2023.
Article in English | MEDLINE | ID: mdl-37334382

ABSTRACT

SHP1 and SHP2 are SH2 domain-containing proteins which have inhibitory phosphatase activity when recruited to phosphorylated ITIMs and ITSMs on inhibitory immune receptors. Consequently, SHP1 and SHP2 are key proteins in the transmission of inhibitory signals within T cells, constituting an important point of convergence for diverse inhibitory receptors. Therefore, SHP1 and SHP2 inhibition may represent a strategy for preventing immunosuppression of T cells mediated by cancers hence improving immunotherapies directed against these malignancies. Both SHP1 and SHP2 contain dual SH2 domains responsible for localization to the endodomain of inhibitory receptors and a protein tyrosine phosphatase domain which dephosphorylates and thus inhibits key mediators of T cell activation. We explored the interaction of the isolated SH2 domains of SHP1 and SHP2 to inhibitory motifs from PD1 and identified strong binding of both SH2 domains from SHP2 and more moderate binding in the case of SHP1. We next explored whether a truncated form of SHP1/2 comprising only of SH2 domains (dSHP1/2) could act in a dominant negative fashion by preventing docking of the wild type proteins. When co-expressed with CARs we found that dSHP2 but not dSHP1 could alleviate immunosuppression mediated by PD1. We next explored the capacity of dSHP2 to bind with other inhibitory receptors and observed several potential interactions. In vivo we observed that the expression of PDL1 on tumor cells impaired the ability of CAR T cells to mediate tumor rejection and this effect was partially reversed by the co-expression of dSHP2 albeit at the cost of reduced CAR T cell proliferation. Modulation of SHP1 and SHP2 activity in engineered T cells through the expression of these truncated variants may enhance T cell activity and hence efficacy in the context of cancer immunotherapy.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , T-Lymphocytes , Carrier Proteins , Immunity , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proteins/metabolism , T-Lymphocytes/metabolism
4.
Mol Ther Nucleic Acids ; 32: 603-621, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37200859

ABSTRACT

The hostile tumor microenvironment limits the efficacy of adoptive cell therapies. Activation of the Fas death receptor initiates apoptosis and disrupting these receptors could be key to increasing CAR T cell efficacy. We screened a library of Fas-TNFR proteins identifying several novel chimeras that not only prevented Fas ligand-mediated kill, but also enhanced CAR T cell efficacy by signaling synergistically with the CAR. Upon binding Fas ligand, Fas-CD40 activated the NF-κB pathway, inducing greatest proliferation and IFN-γ release out of all Fas-TNFRs tested. Fas-CD40 induced profound transcriptional modifications, particularly genes relating to the cell cycle, metabolism, and chemokine signaling. Co-expression of Fas-CD40 with either 4-1BB- or CD28-containing CARs increased in vitro efficacy by augmenting CAR T cell proliferation and cancer target cytotoxicity, and enhanced tumor killing and overall mouse survival in vivo. Functional activity of the Fas-TNFRs were dependent on the co-stimulatory domain within the CAR, highlighting crosstalk between signaling pathways. Furthermore, we show that a major source for Fas-TNFR activation derives from CAR T cells themselves via activation-induced Fas ligand upregulation, highlighting a universal role of Fas-TNFRs in augmenting CAR T cell responses. We have identified Fas-CD40 as the optimal chimera for overcoming Fas ligand-mediated kill and enhancing CAR T cell efficacy.

5.
Mol Ther ; 31(7): 2089-2104, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36945773

ABSTRACT

CAR T cells recognizing CD19 effectively treat relapsed and refractory B-ALL and DLBCL. However, CD19 loss is a frequent cause of relapse. Simultaneously targeting a second antigen, CD22, may decrease antigen escape, but is challenging: its density is approximately 10-fold less than CD19, and its large structure may hamper immune synapse formation. The characteristics of the optimal CD22 CAR are underexplored. We generated 12 distinct CD22 antibodies and tested CARs derived from them to identify a CAR based on the novel 9A8 antibody, which was sensitive to low CD22 density and lacked tonic signaling. We found no correlation between affinity or membrane proximity of recognition epitope within Ig domains 3-6 of CD22 with CART function. The optimal strategy for CD19/CD22 CART co-targeting is undetermined. Co-administration of CD19 and CD22 CARs is costly; single CARs targeting CD19 and CD22 are challenging to construct. The co-expression of two CARs has previously been achieved using bicistronic vectors. Here, we generated a dual CART product by co-transduction with 9A8-41BBζ and CAT-41BBζ (obe-cel), the previously described CD19 CAR. CAT/9A8 CART eliminated single- and double-positive target cells in vitro and eliminated CD19- tumors in vivo. CAT/9A8 CART is being tested in a phase I clinical study (NCT02443831).


Subject(s)
Burkitt Lymphoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Neoplasm Recurrence, Local , Immunotherapy, Adoptive , Adaptor Proteins, Signal Transducing , Antigens, CD19 , Antibodies , Sialic Acid Binding Ig-like Lectin 2
6.
Chemosphere ; 288(Pt 3): 132639, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34687677

ABSTRACT

Polychlorinated biphenyls (PCBs) can provide crucial information into the bioaccumulation and biomagnification of POPs in marine mammals. Muscle tissue samples were obtained for detailed PCB congener specific analysis of all 209 PCBs in 11 species of marine mammals stranded across the coast of the UK between 2010 and 2013. At least 145 PCB congeners were found in each individual. The highest concentrations of PCBs were recorded in a killer whale (318 mg/kg lipid) and the highest toxic equivalent in a Risso's dolphin (1687 pg/g TEQ2005 wet). Concentrations of PCBs in the majority of samples exceeded toxic thresholds (9 mg/kg lipid) for marine mammals, highlighting the health risk they face from PCB exposure. Many PCB profiles did not fit typical 'Aroclor' signatures, but instead indicated patterns of congeners that are resistant to biotransformation and elimination. However, this study identified a novel PCB signature in a sei whale that has not yet been previously observed in marine mammals. The whale had a PCB profile that included lighter and inadvertent PCB congeners such as PCB 11, suggesting that the main source of exposure was through atmospheric deposition, rather than terrestrial discharges. Seven subsamples were chosen for chiral analysis of PCB 95, 136 and 149. The enantiomer fractions (EFs) of C-PCBs 95 and 149 were non racemic suggesting there may be enantiomer selective metabolism in marine mammals. Although there has been a shift in the literature towards emerging pollutants, this study acts as a stark reminder that PCBs continue to pose a significant risk to wildlife.


Subject(s)
Caniformia , Environmental Pollutants , Polychlorinated Biphenyls , Animals , Atlantic Ocean , Biotransformation , Environmental Pollutants/analysis , Polychlorinated Biphenyls/analysis
7.
Small ; 17(14): e2005241, 2021 04.
Article in English | MEDLINE | ID: mdl-33734595

ABSTRACT

Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Ferric Compounds , Humans , Hyperthermia , Magnetic Fields , Magnetics
8.
ACS Nano ; 12(2): 1156-1169, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29341587

ABSTRACT

The magnetic properties and safety of dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) have facilitated their clinical use as MRI contrast agents and stimulated research on applications for SPIONs in particle imaging and magnetic hyperthermia. The wider clinical potential of SPIONs, however, has been limited by their rapid removal from circulation via the reticuloendothelial system (RES). We explored the possibility of extending SPION circulatory time using fucoidan, a seaweed-derived food supplement, to inhibit RES uptake. The effects of fucoidan on SPION biodistribution were evaluated using ferucarbotran, which in its pharmaceutical formulation (Resovist) targets the RES. Ferucarbotran was radiolabeled at the iron oxide core with technetium-99m (99mTc; t1/2 = 6 h) or zirconium-89 (89Zr; t1/2 = 3.3 days). Results obtained with 99mTc-ferucarbotran demonstrated that administration of fucoidan led to a 4-fold increase in the circulatory half-life (t1/2 slow) from 37.4 to 150 min (n = 4; P < 0.0001). To investigate whether a longer circulatory half-life could lead to concomitant increased tumor uptake, the effects of fucoidan were tested with 89Zr-ferucarbotran in mice bearing syngeneic subcutaneous (GL261) tumors. In this model, the longer circulatory half-life achieved with fucoidan was associated with a doubling in tumor SPION uptake (n = 5; P < 0.001). Fucoidan was also effective in significantly increasing the circulatory half-life of perimag-COOH, a commercially available SPION with a larger hydrodynamic size (130 nm) than ferucarbotran (65 nm). These findings indicate successful diversion of SPIONs away from the hepatic RES and show realistic potential for future clinical applications.

9.
J Med Chem ; 61(6): 2500-2517, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29356532

ABSTRACT

Human pancreatic ductal adenocarcinoma (PDAC) involves the dysregulation of multiple signaling pathways. A novel approach to the treatment of PDAC is described, involving the targeting of cancer genes in PDAC pathways having over-representation of G-quadruplexes, using the trisubstituted naphthalene diimide quadruplex-binding compound 2,7-bis(3-morpholinopropyl)-4-((2-(pyrrolidin-1-yl)ethyl)amino)benzo[ lmn][3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone (CM03). This compound has been designed by computer modeling, is a potent inhibitor of cell growth in PDAC cell lines, and has anticancer activity in PDAC models, with a superior profile compared to gemcitabine, a commonly used therapy. Whole-transcriptome RNA-seq methodology has been used to analyze the effects of this quadruplex-binding small molecule on global gene expression. This has revealed the down-regulation of a large number of genes, rich in putative quadruplex elements and involved in essential pathways of PDAC survival, metastasis, and drug resistance. The changes produced by CM03 represent a global response to the complexity of human PDAC and may be applicable to other currently hard-to-treat cancers.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , G-Quadruplexes , Pancreatic Neoplasms/drug therapy , Animals , Antimetabolites, Antineoplastic/pharmacology , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Computational Biology , Computer Simulation , DNA Damage , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Down-Regulation/drug effects , Drug Design , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Nude , Pancreatic Neoplasms/genetics , Xenograft Model Antitumor Assays , Gemcitabine
10.
Anal Chim Acta ; 941: 10-25, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27692373

ABSTRACT

The field of environmental forensics emerged in the 1980s as a consequence of legislative frameworks enacted to enable parties, either states or individuals, to seek compensation with regard to contamination or injury due to damage to the environment. This legal environment requires stringent record keeping and defendable data therefore analysis can sometimes be confined to data to be obtained from certified laboratories using a standard accredited analytical method. Many of these methods were developed to target specific compounds for risk assessment purposes and not for environmental forensics applications such as source identification or age dating which often require larger data sets. The determination of persistent organic pollutants (POPs) for environmental forensic applications requires methods that are selective but also cover a wide range of target analytes which can be identified and quantified without bias. POPs are used in a wide variety of applications such as flame retardants, fire suppressants, heat transfer agents, surfactants and pesticides mainly because of their chemical inertness and stability. They also include compounds such as dioxins that can be unintentionally produced from industrial activities. POPs are persistent in the environment, bioaccumulative and/or toxic and therefore require analytical methods that are sensitive enough to meet the low detection limits needed for the protection of the environment and human health. A variety of techniques, procedures and instruments can be used which are well suited for different scenarios. Optimised methods are important to ensure that analytes are quantitatively extracted, matrix coextractables and interferences are removed and instruments are used most effectively and efficiently. This can require deviation from standard methods which can open the data up to further scrutiny in the courtroom. However, when argued effectively and strict QA/QC procedures are followed the development and optimization of methods based on investigation specific scenarios has the potential to generate better quality and more useful data.

11.
Br J Cancer ; 114(8): 897-904, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27031853

ABSTRACT

BACKGROUND: Non-invasive measures of tumour vascular perfusion are desirable, in order to assess response to vascular targeting (or modifying) therapies. In this study, hepatic arterial spin labelling (ASL) magnetic resonance imaging (MRI) was investigated to measure acute changes in perfusion of colorectal cancer in the liver, in response to vascular disruption therapy with OXi4503. METHODS: SW1222 and LS174T tumours were established in the liver of MF1 nu/nu mice via intrasplenic injection. Perfusion and R2(*) MRI measurements were acquired with an Agilent 9.4T horizontal bore scanner, before and at 90 min after 40 mg kg(-1) OXi4503. RESULTS: A significant decrease in SW1222 tumour perfusion was observed (-43±33%, P<0.005). LS174T tumours had a significantly lower baseline level of perfusion. Intrinsic susceptibility MRI showed a significant increase in R2(*) in LS174T tumours (28±25%, P<0.05). An association was found between the change in tumour perfusion and the proximity to large vessels, with pre-treatment blood flow predictive of subsequent response. Histological evaluation confirmed the onset of necrosis and evidence of heterogeneous response between tumour deposits. CONCLUSIONS: Hepatic ASL-MRI can detect acute response to targeted tumour vascular disruption entirely non-invasively. Hepatic ASL of liver tumours has potential for use in a clinical setting.


Subject(s)
Hepatic Artery/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Liver/pathology , Animals , Cell Line, Tumor , Colorectal Neoplasms/pathology , Female , Magnetic Resonance Angiography/methods , Magnetic Resonance Spectroscopy/methods , Mice , Mice, Nude , Spin Labels
12.
Sci Rep ; 6: 22950, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26972697

ABSTRACT

The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours.


Subject(s)
Hydrolases/pharmacology , Neoplasms/drug therapy , Nitric Oxide/biosynthesis , Polyethylene Glycols/pharmacology , Xenograft Model Antitumor Assays , Animals , Arginine/metabolism , Argininosuccinate Synthase/antagonists & inhibitors , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Blotting, Western , Cell Hypoxia , Cell Line, Tumor , HCT116 Cells , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mice, SCID , Multiprotein Complexes/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Nitric Oxide Synthase Type II/metabolism , Perfusion , TOR Serine-Threonine Kinases/metabolism , Tumor Burden/drug effects , Unfolded Protein Response/drug effects , Vascular Endothelial Growth Factor A/metabolism
13.
J Med Chem ; 58(15): 6058-80, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26161456

ABSTRACT

Increased activity of efflux transporters, e.g., P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), at the blood-brain barrier is a pathological hallmark of many neurological diseases, and the resulting multiple drug resistance represents a major clinical challenge. Noninvasive imaging of transporter activity can help to clarify the underlying mechanisms of drug resistance and facilitate diagnosis, patient stratification, and treatment monitoring. We have developed a metabolically activated radiotracer for functional imaging of P-gp/BCRP activity with positron emission tomography (PET). In preclinical studies, the tracer showed excellent initial brain uptake and clean conversion to the desired metabolite, although at a sluggish rate. Blocking with P-gp/BCRP modulators led to increased levels of brain radioactivity; however, dynamic PET did not show differential clearance rates between treatment and control groups. Our results provide proof-of-concept for development of prodrug tracers for imaging of P-gp/BCRP function in vivo but also highlight some challenges associated with this strategy.


Subject(s)
Fluorine Radioisotopes/chemistry , Membrane Transport Proteins/metabolism , Positron-Emission Tomography/methods , Animals , Blood-Brain Barrier , Female , Mice , Tissue Distribution
14.
Sci Rep ; 5: 11385, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26077929

ABSTRACT

We report here that a tetra-substituted naphthalene-diimide derivative (MM41) has significant in vivo anti-tumour activity against the MIA PaCa-2 pancreatic cancer xenograft model. IV administration with a twice-weekly 15 mg/kg dose produces ca 80% tumour growth decrease in a group of tumour-bearing animals. Two animals survived tumour-free after 279 days. High levels of MM41 are rapidly transported into cell nuclei and were found to accumulate in the tumour. MM41 is a quadruplex-interactive compound which binds strongly to the quadruplexes encoded in the promoter sequences of the BCL-2 and k-RAS genes, both of which are dis-regulated in many human pancreatic cancers. Levels of BCL-2 were reduced by ca 40% in tumours from MM41-treated animals relative to controls, consistent with BCL-2 being a target for MM41. Molecular modelling suggests that MM41 binds to a BCL-2 quadruplex in a manner resembling that previously observed in co-crystal structures with human telomeric quadruplexes. This supports the concept that MM41 (and by implication other quadruplex-targeting small molecules) can bind to quadruplex-forming promoter regions in a number of genes and down-regulate their transcription. We suggest that quadruplexes within those master genes that are up-regulated drivers for particular cancers, may be selective targets for compounds such as MM41.


Subject(s)
Antineoplastic Agents/pharmacology , Imides/pharmacology , Naphthalenes/pharmacology , Pancreatic Neoplasms/drug therapy , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Administration Schedule , Female , G-Quadruplexes , Gene Expression , Humans , Imides/chemistry , Injections, Intravenous , Mice , Mice, Nude , Molecular Dynamics Simulation , Naphthalenes/chemistry , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription, Genetic , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
15.
J Nucl Med ; 56(8): 1239-45, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26045312

ABSTRACT

UNLABELLED: Despite extensive efforts to improve the clinical management of patients with colorectal cancer, approved treatments for advanced disease offer limited survival benefit. Therefore, the identification of novel treatment strategies is essential. We evaluated the preclinical efficacy of combination radioimmunotherapy, using a humanized (131)I-labeled anti-carcinoembryonic antigen antibody ((131)I-huA5B7), with cetuximab in colorectal cancer (CRC). METHODS: Three human CRC cell lines--SW1222, LoVo, and LS174T--were used to generate subcutaneous xenografts, and stably luciferase-transfected SW1222 cells were used to establish a model of hepatic metastases in immunocompromised mice. Imaging and biodistribution studies were conducted to confirm the selective tumor localization of (131)I-huA5B7. Efficacy was evaluated on the basis of tumor growth delay and survival, along with markers of DNA damage response, cell cycle, proliferation, and apoptosis. RESULTS: Selective tumor targeting was achieved with (131)I-huA5B7 alone or in combination with cetuximab without observable toxicity. Compared with monotherapy, combining cetuximab with radioimmunotherapy significantly and synergistically reduced tumor growth and prolonged survival of mice in 2 of the subcutaneous and in the metastatic tumor model. Evidence of DNA damage, G2/M arrest, significantly decreased proliferation, and increased apoptosis were observed with radioimmunotherapy and the combination therapy. However, a significant decrease in DNA-protein kinase expression with the combination regimen suggests that the addition of cetuximab suppressed DNA repair. CONCLUSION: Our results demonstrate enhanced therapeutic efficacy with the combination of cetuximab and radioimmunotherapy in CRC, which could potentially translate into successful clinical outcomes. This strategy could improve the treatment of residual disease postoperatively and ultimately prevent or delay recurrence. Furthermore, other carcinoembryonic antigen-expressing malignancies could also benefit from this approach.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/radiotherapy , Radioimmunotherapy/methods , Animals , Apoptosis , Carcinoembryonic Antigen/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cetuximab , Colorectal Neoplasms/diagnostic imaging , DNA Damage , Female , Humans , Kaplan-Meier Estimate , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Mice , Mice, Nude , Mice, SCID , Neoplasm Metastasis , Radionuclide Imaging , Xenograft Model Antitumor Assays
16.
Faraday Discuss ; 175: 41-58, 2014.
Article in English | MEDLINE | ID: mdl-25298115

ABSTRACT

The rapid reticuloendothelial system (RES) mediated clearance of superparamagnetic iron oxide nanoparticles (SPIONs) from circulation is considered a major limitation of their clinical utility. We aimed to address this by using dextran sulfate 500 (DSO4 500), a Kupffer cell blocking agent, to prolong SPIONs circulatory time. Blood concentrations of SPIONs are difficult to quantify due to the presence of haemoglobin. We therefore developed methods to functionalise SPIONs with near-infrared (NIR) dyes in order to trace their biodistribution. Two SPIONs were investigated: Nanomag®-D-spio-NH(2) and Ferucarbotran. Nanomag®-D-spio-NH(2) was functionalised using NHS (N-hydroxysuccinimide) ester NIR dye and Ferucarbotran was labelled using periodate oxidation followed by reductive amination or a combination of EDC (ethyl(dimethylaminopropyl) carbodiimide )/NHS and click chemistries. Stability after conjugation was confirmed by dynamic light scattering (DLS), superconducting quantum interference device (SQUID) and transmission electron microscopy (TEM). In vivo experiments with the functionalised SPIONs showed a significant improvement in SPIONs blood concentrations in mice pre-treated with dextran sulfate sodium salt 500 (DSO4 500).


Subject(s)
Coloring Agents/chemistry , Dextran Sulfate/chemistry , Ferric Compounds/chemistry , Nanoparticles/chemistry , Animals , Click Chemistry , Coloring Agents/administration & dosage , Dextran Sulfate/administration & dosage , Dextran Sulfate/blood , Female , Ferric Compounds/administration & dosage , Ferric Compounds/blood , Infrared Rays , Mice , Mice, Inbred BALB C , Models, Animal , Molecular Conformation , Nanoparticles/administration & dosage , Particle Size , Surface Properties
17.
Mol Cancer ; 13: 20, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24491031

ABSTRACT

BACKGROUND: The transcription factor Nrf2 is a key regulator of the cellular antioxidant response, and its activation by chemoprotective agents has been proposed as a potential strategy to prevent cancer. However, activating mutations in the Nrf2 pathway have been found to promote tumorigenesis in certain models. Therefore, the role of Nrf2 in cancer remains contentious. METHODS: We employed a well-characterized model of stepwise human mesenchymal stem cell (MSC) transformation and breast cancer cell lines to investigate oxidative stress and the role of Nrf2 during tumorigenesis. The Nrf2 pathway was studied by microarray analyses, qRT-PCR, and western-blotting. To assess the contribution of Nrf2 to transformation, we established tumor xenografts with transformed MSC expressing Nrf2 (n = 6 mice per group). Expression and survival data for Nrf2 in different cancers were obtained from GEO and TCGA databases. All statistical tests were two-sided. RESULTS: We found an accumulation of reactive oxygen species during MSC transformation that correlated with the transcriptional down-regulation of antioxidants and Nrf2-downstream genes. Nrf2 was repressed in transformed MSC and in breast cancer cells via oncogene-induced activation of the RAS/RAF/ERK pathway. Furthermore, restoration of Nrf2 function in transformed cells decreased reactive oxygen species and impaired in vivo tumor growth (P = 0.001) by mechanisms that included sensitization to apoptosis, and a decreased hypoxic/angiogenic response through HIF-1α destabilization and VEGFA repression. Microarray analyses showed down-regulation of Nrf2 in a panel of human tumors and, strikingly, low Nrf2 expression correlated with poorer survival in patients with melanoma (P = 0.0341), kidney (P = 0.0203) and prostate (P = 0.00279) cancers. CONCLUSIONS: Our data indicate that oncogene-induced Nrf2 repression is an adaptive response for certain cancers to acquire a pro-oxidant state that favors cell survival and in vivo tumor growth.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Mesenchymal Stem Cells/metabolism , NF-E2-Related Factor 2/biosynthesis , Neoplasms/metabolism , Animals , Apoptosis/physiology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Down-Regulation , Heterografts , Humans , Mesenchymal Stem Cells/pathology , Mice , Neoplasms/genetics , Neoplasms/mortality , Oligonucleotide Array Sequence Analysis , Oxidative Stress/physiology , Proportional Hazards Models , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology , Survival Analysis
18.
J Med Chem ; 57(3): 1023-32, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24456310

ABSTRACT

Multidrug resistance-associated protein 1 (MRP1) is a drug efflux transporter that has been implicated in the pathology of several neurological diseases and is associated with development of multidrug resistance. To enable measurement of MRP1 function in the living brain, a series of 6-halopurines decorated with fluorinated side chains have been synthesized and evaluated as putative pro-drug tracers. The tracers were designed to undergo conjugation with glutathione within the brain and hence form the corresponding MRP1 substrate tracers in situ. 6-Bromo-7-(2-[(18)F]fluoroethyl)purine showed good brain uptake and rapid metabolic conversion. Dynamic PET imaging demonstrated a marked difference in brain clearance rates between wild-type and mrp1 knockout mice, suggesting that the tracer can allow noninvasive assessment of MRP1 activity in vivo.


Subject(s)
Multidrug Resistance-Associated Proteins/metabolism , Prodrugs/chemical synthesis , Purines/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Animals , Brain/diagnostic imaging , Brain/metabolism , Fluorine Radioisotopes , Mice , Mice, Inbred BALB C , Mice, Knockout , Multidrug Resistance-Associated Proteins/genetics , Positron-Emission Tomography , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Purines/chemistry , Purines/pharmacokinetics , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Structure-Activity Relationship , Tissue Distribution
19.
Bioorg Med Chem Lett ; 23(18): 5170-3, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23910595

ABSTRACT

In vivo imaging of voltage-gated sodium channels (VGSCs) can potentially provide insights into the activation of neuronal pathways and aid the diagnosis of a number of neurological diseases. The iminodihydroquinoline WIN17317-3 is one of the most potent sodium channel blockers reported to date and binds with high affinity to VGSCs throughout the rat brain. We have synthesized a (125)I-labeled analogue of WIN17317-3 and evaluated the potential of the tracer for imaging of VGSCs with SPECT. Automated patch clamp studies with CHO cells expressing the Nav1.2 isoform and displacement studies with [(3)H]BTX yielded comparable results for the non-radioactive iodinated iminodihydroquinoline and WIN17317-3. However, the (125)I-labeled tracer was rapidly metabolized in vivo, and suffered from low brain uptake and high accumulation of radioactivity in the intestines. The results suggest that iminodihydroquinolines are poorly suited for tracer development.


Subject(s)
Iodine Radioisotopes/pharmacology , Quinolines/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/drug effects , Animals , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , Female , Humans , Iodine Radioisotopes/chemistry , Iodine Radioisotopes/metabolism , Mice , Mice, Inbred BALB C , Molecular Structure , Quinolines/chemistry , Quinolines/metabolism , Structure-Activity Relationship , Tissue Distribution , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/metabolism
20.
J Med Chem ; 56(7): 2911-35, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23514599

ABSTRACT

DNA binding 4-(1-methyl-1H-pyrrol-3-yl)benzenamine (MPB) building blocks have been developed that span two DNA base pairs with a strong preference for GC-rich DNA. They have been conjugated to a pyrrolo[2,1-c][1,4]benzodiazepine (PBD) molecule to produce C8-linked PBD-MPB hybrids that can stabilize GC-rich DNA by up to 13-fold compared to AT-rich DNA. Some have subpicomolar IC50 values in human tumor cell lines and in primary chronic lymphocytic leukemia cells, while being up to 6 orders less cytotoxic in the non-tumor cell line WI38, suggesting that key DNA sequences may be relevant targets in these ultrasensitive cancer cell lines. One conjugate, 7h (KMR-28-39), which has femtomolar activity in the breast cancer cell line MDA-MB-231, has significant dose-dependent antitumor activity in MDA-MB-231 (breast) and MIA PaCa-2 (pancreatic) human tumor xenograft mouse models with insignificant toxicity at therapeutic doses. Preliminary studies suggest that 7h may sterically inhibit interaction of the transcription factor NF-κB with its cognate DNA binding sequence.


Subject(s)
Antineoplastic Agents/pharmacology , Benzodiazepines/pharmacology , GC Rich Sequence , Animals , Benzodiazepines/chemistry , Cell Line, Tumor , Disease Models, Animal , Drug Screening Assays, Antitumor , Fluorescence Resonance Energy Transfer , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Mice , Models, Molecular , Molecular Structure , NF-kappa B/antagonists & inhibitors , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...