Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R910-R920, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36250861

ABSTRACT

Large body mass (Mb) in vertebrates is associated with longer pulse intervals between heartbeats (PI) and thicker arterial walls. Longer PI increases the time for diastolic pressure decay, possibly resulting in loss of cardiac energy as "oscillatory power," whereas thicker arterial walls may affect the transmission of impulses and sensing of pressure fluctuations thus impairing baroreflex function. We aimed to investigate the effect of growth on the relative cardiac energy loss and baroreflex function. We predicted that 1) the relative use of cardiac energy should be preserved with increased time constant for pressure decay (τ = vascular resistance × compliance) and 2) if arterial circumferential distensibility does not change, baroreflex function should be unaltered with Mb. To test these hypotheses, we used green iguanas (Iguana iguana) weighing from 0.03 to 1.34 kg (43-fold increment in Mb). PI (P = 0.037) and τ (P = 0.035) increased with Mb, whereas the oscillatory power fraction (P = 0.245) was unrelated to it. Thus, the concomitant alterations of τ and PI allowed the conservation of cardiac energy in larger lizards. Larger animals had thicker arterial walls (P = 0.0007) and greater relative collagen content (P = 0.022). Area compliance scaled positively to Mb (P = 0.045), though circumferential distensibility (P = 0.155) and elastic modulus (P = 0.762) were unaltered. In addition, baroreflex sensitivity, measured by both the pharmacological (P = 0.152) and sequence methods (P = 0.088), and the baroreflex effectiveness index (P = 0.306) were also unrelated to Mb. Therefore, changes in arterial morphology did not affect circumferential distensibility and presumably sensing of pressure fluctuation, and the cardiovagal baroreflex is preserved across different Mb.


Subject(s)
Baroreflex , Iguanas , Animals , Baroreflex/physiology , Iguanas/anatomy & histology , Iguanas/physiology , Heart Rate , Blood Pressure/physiology , Heart
2.
Lasers Med Sci ; 35(3): 567-572, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31396793

ABSTRACT

To evaluate whether acute photobiomodulation can elicit a hypotensive effect in spontaneously hypertensive rats (SHR). Male SHR were submitted to the implantation of a polyethylene cannula into the femoral artery. After 24 h, baseline measurements of the hemodynamic parameters: systolic, diastolic, and mean arterial pressure, and heart rate were accomplished for 1 h. Afterwards, laser application was simulated, and the hemodynamic parameters were recorded for 1 h. In the same animal, the laser was applied at six different positions of the rat's abdomen, and the hemodynamic parameters were also recorded until the end of the hypotensive effect. The irradiation parameters were red wavelength (660 nm); average optical power of 100 mW; 56 s per point (six points); spot area of 0.0586 cm2; and irradiance of 1.71 W/cm2 yielding to a fluency of 96 J/cm2 per point. For measuring plasma NO levels, blood was collected before the recording, as well as immediately after the end of the mediated hypotensive effect. Photobiomodulation therapy was able to reduce the systolic arterial pressure in 69% of the SHR submitted to the application, displaying a decrease in systolic, diastolic, and mean arterial pressure. No change in heart rate was observed. Nevertheless, there was an increase in serum nitric oxide levels in the SHR responsive to photobiomodulation. Our results suggest that acute irradiation with a red laser at 660 nm can elicit a hypotensive effect in SHR, probably by a mechanism involving the release of NO, without changing the heart rate.


Subject(s)
Hypertension/radiotherapy , Low-Level Light Therapy , Animals , Blood Pressure/radiation effects , Heart Rate/radiation effects , Hemodynamics/radiation effects , Hypertension/blood , Hypertension/physiopathology , Male , Nitric Oxide/blood , Rats , Rats, Inbred SHR
3.
J Cardiovasc Pharmacol ; 65(2): 168-75, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25384194

ABSTRACT

Nitric oxide (NO) can be found in different species and is a potent vasodilator. The ruthenium compound cis-[Ru(NO)(NO2)(bpy)2].(PF6)2 (BPY) can generate NO. This study aimed to investigate the BPY stability at physiological pH, the cellular mechanisms involved in BPY effect, NO species originating from BPY, and to verify how BPY affects blood pressure. Our results has shown that at pH 7.4 and 9.4, the NO coordinated to ruthenium (Ru-NO) is converted to nitrite (Ru-NO2) and remains stable. In aortic rings, the stable configuration of BPY (Ru-NO2) induces vascular relaxation in a concentration-dependent manner. Thus, further experiments were made with stable configuration of BPY (Ru-NO2). The relaxation induced by BPY was abolished in the presence of guanylyl cyclase inhibitor and decreased in the presence of potassium channel blocker. By using radicalar (NO) and nitroxyl (NO) scavenger, our results suggest that the BPY mainly release the radicalar species. By using fluorescence probes to detect intracellular NO concentration ([NO]i) and cytosolic Ca concentration ([Ca]c), we verified that in smooth muscle cells, BPY induces an increase in [NO]i and a decrease in [Ca]c. The intravenous bolus injection of 1.25, 2.5, and 5.0 mg/kg from stable configuration of BPY results in a decrease on basal blood pressure values. Taken together, our results indicated that the stable configuration of the compound BPY induces vascular relaxation in aorta because of NO release and decrease of [Ca]c in vascular smooth muscle cells. Also, the stable configuration is able to reduce the blood pressure in a dose-dependent manner.


Subject(s)
Blood Pressure/drug effects , Muscle, Smooth, Vascular , Nitric Oxide/metabolism , Ruthenium Compounds/pharmacology , Vasodilation , Animals , Aorta , Dose-Response Relationship, Drug , Guanylate Cyclase/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Rats , Rats, Wistar , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/pharmacology
4.
J Cardiovasc Pharmacol ; 60(2): 193-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22635073

ABSTRACT

In this study, we investigated the effect of the ruthenium complex [Ru(terpy)(bdq)NO] (TERPY) on the arterial pressure from renal hypertensive 2 kidney-1 clip (2K-1C) rats, which was compared with sodium nitroprusside (SNP). The most interesting finding was that the intravenous bolus injection of TERPY (2.5, 5.0, 7 mg/kg) had a dose-dependent hypotensive effect only in 2K-1C rats. On the other hand, SNP (35 and 70 µg/kg) presented a similar hypotensive effect in both normotensive (2K) and 2K-1C although the effect of 70 µg/kg was >35 µg/kg. The injection of the nonselective NO-synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) increased the arterial pressure in 2K and 2K-1C rats with a similar magnitude. After infusion of L-NAME, the hypotensive effect induced by TERPY and SNP was potentiated in both 2K and in 2K-1C rats. The administration of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl increased the hypotensive effect induced by TERPY or SNP in both 2K and 2K-1C rats. The hypotensive effect induced by TERPY was longer than that produced by SNP. Taken together, our results show that the TERPY has a long-lasting hypotensive effect, which has a dose dependence and higher magnitude in 2K-1C compared with in 2K rats. In comparison with SNP, TERPY is less potent in inducing arterial pressure fall, but it presents a much longer hypotensive effect.


Subject(s)
Antihypertensive Agents/pharmacology , Arterial Pressure/drug effects , Hypertension, Renovascular/drug therapy , Nitric Oxide Donors/pharmacology , Nitric Oxide/metabolism , Ruthenium Compounds/pharmacology , Animals , Antihypertensive Agents/metabolism , Cyclic N-Oxides/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Free Radical Scavengers/pharmacology , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/physiopathology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Donors/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Nitroprusside/pharmacology , Rats , Ruthenium Compounds/metabolism , Spin Labels , Time Factors
5.
Nitric Oxide ; 27(1): 59-66, 2012 Jun 30.
Article in English | MEDLINE | ID: mdl-22561111

ABSTRACT

Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F(1α) (6-keto-PGF(1α)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1α) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS.


Subject(s)
Cecum/injuries , Cecum/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/biosynthesis , Sepsis/metabolism , Acetylcholine/pharmacology , Animals , Aorta/metabolism , Blood Pressure/drug effects , Blotting, Western , Disease Models, Animal , Intestinal Perforation , Ligation , Male , Nitric Oxide/metabolism , Prostaglandins I/metabolism , Protein Isoforms , Rats , Rats, Wistar , Up-Regulation , Vasodilation/drug effects
6.
Nitric Oxide ; 26(3): 162-8, 2012 Mar 31.
Article in English | MEDLINE | ID: mdl-22327038

ABSTRACT

Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 ± 17.3 versus 209 ± 10.9mm Hg in hypertensive controls, p<0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p<0.05). Doxycycline also decreased hypertension-induced oxidative stress (p<0.05), higher MMP activity (p<0.01) and improved NO levels in aortic endothelial cells (p<0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity.


Subject(s)
Doxycycline/pharmacology , Hypertension, Renal/drug therapy , Kidney/blood supply , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Animals , Aorta/drug effects , Aorta/metabolism , Blood Pressure/drug effects , Calcimycin/pharmacology , Calcium Ionophores/pharmacology , Disease Models, Animal , Hypertension, Renal/metabolism , Hypertension, Renal/pathology , Linear Models , Male , Matrix Metalloproteinase 9/metabolism , Neutrophils/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
7.
Eur J Pharm Sci ; 45(3): 344-50, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22178018

ABSTRACT

Nitric oxide (NO)-donors are pharmacologically active substances that in vivo or in vitro release NO. Their most common side effect is headache caused by cerebral vasodilatation. We previously demonstrated that the new NO-donor Ru(terpy)(bdq)NO](3+) (Terpy), synthesized in our laboratory, induces relaxation of rat aorta. This study aimed to verify the effect of Terpy and sodium nitroprusside (SNP) in basilar artery. We conducted vascular reactivity experiments on endothelium-denuded basilar rings. The concentrations of iron (Fe) and ruthenium (Ru) complex were analyzed in basilar artery lysates after incubation with NO donors by mass spectrometry. We also evaluated the NO released from SNP and Terpy by using confocal microscopy. Interestingly, Terpy did not induce relaxation of the basilar artery. SNP induced relaxation in a concentration-dependent way. NO donors cross the membrane of vascular smooth muscle and entered the cell. In spite of its permeability, Terpy did not release NO in the basilar artery. Otherwise, SNP released NO in the basilar artery cells cytoplasm. Taken together, our results demonstrate that the new NO donor (Terpy) failed to release NO and to induce relaxation in the basilar artery. The NO donor SNP induces vascular relaxation due to NO release in the vascular smooth muscle cells.


Subject(s)
2,2'-Dipyridyl/pharmacology , Basilar Artery/drug effects , Coordination Complexes/pharmacology , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Vasodilation/drug effects , 2,2'-Dipyridyl/analogs & derivatives , 2,2'-Dipyridyl/chemistry , Animals , Basilar Artery/physiology , Coordination Complexes/chemistry , Endothelium, Vascular/drug effects , Male , Microscopy, Confocal , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , Nitric Oxide/pharmacology , Nitric Oxide Donors/chemistry , Rats , Rats, Wistar , Ruthenium/chemistry
8.
Eur J Pharmacol ; 660(2-3): 402-10, 2011 Jun 25.
Article in English | MEDLINE | ID: mdl-21539836

ABSTRACT

The present work investigates the mechanisms involved in the vasorelaxant effect of ent-16α-methoxykauran-19-oic acid (KA-OCH3), a semi-synthetic derivative obtained from the kaurane-type diterpene ent-kaur-16-en-19-oic acid (kaurenoic acid). Vascular reactivity experiments were performed in aortic rings isolated from male Wistar rats using standard muscle bath procedures. The cytosolic calcium concentration ([Ca2+]c) was measured by confocal microscopy using the fluorescent probe Fluo-3 AM. Blood pressure measurements were performed in conscious rats. KA-OCH3 (10, 50 and 100 µmol/l) inhibited phenylephrine-induced contraction in either endothelium-intact or endothelium-denuded rat aortic rings. KA-OCH3 also reduced CaCl2-induced contraction in a Ca2+-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 µmol/l). KA-OCH3 (0.1-300 µmol/l) concentration-dependently relaxed endothelium-intact and endothelium-denuded aortas pre-contracted with either phenylephrine or KCl, to a greater extent than kaurenoic acid. Moreover, a Ca2+ mobilisation study showed that KA-OCH3 (100 µmol/l) inhibited the increase in Ca2+ concentration in smooth muscle and endothelial cells induced by phenylephrine or KCl. Pre-incubation of intact or denuded aortic rings with NG-nitro-L-arginine methyl ester (L-NAME, 100 µmol/l), 7-nitroindazole (100 µmol/l), wortmannin (0.5 µmol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 µmol/l) produced a rightward displacement of the KA-OCH3 concentration-response curve. Intravenous administration of KA-OCH3 (1-10 mg/kg) reduced mean arterial blood pressure in normotensive rats. Collectively, our results show that KA-OCH3 induces vascular relaxation and hypotension. The mechanisms underlying the cardiovascular actions of KA-OCH3 involve blockade of Ca2+ influx and activation of the NO-cGMP pathway.


Subject(s)
Diterpenes, Kaurane/pharmacology , Hypotension/chemically induced , Vasodilation/drug effects , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/physiology , Aorta/physiopathology , Blood Pressure/drug effects , Blood Pressure/physiology , Calcium/metabolism , Calcium Chloride/pharmacology , Diterpenes, Kaurane/chemical synthesis , Hypotension/metabolism , Hypotension/pathology , Hypotension/physiopathology , In Vitro Techniques , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Phenylephrine/pharmacology , Potassium Chloride/pharmacology , Rats , Time Factors
9.
Vascul Pharmacol ; 54(1-2): 44-51, 2011.
Article in English | MEDLINE | ID: mdl-21167958

ABSTRACT

Nitric oxide has been pointed out as the main agent involved in the vasodilatation, which is the major symptom of septic shock. However, there must be another mediator contributing to the circulatory failure observed in sepsis. This study aimed to investigate the endothelium-dependent relaxation induced by acetylcholine and the factors involved in this relaxation, using aortic rings isolated from rats submitted to cecal ligation and perforation (CLP), 2h after induction of sepsis, which characterizes the hyperdynamic phase of sepsis. Under inhibition of constitutive NO-synthases (cNOS), the relaxation induced by acetylcholine was greater in the aortic rings of rats submitted to CLP compared with sham-operated rat aortic rings. The cyclooxygenase inhibitor indomethacin normalized this response, and the concentration of the stable metabolite of prostacyclin in the aorta of CLP rats increased in basal conditions and after stimulation with acetylcholine. Acetylcholine-induced NO production was lower in the endothelial cells from the aorta of CLP rats compared with sham rat aorta, but the protein expression of the cNOS was not altered. Moreover, iNOS protein expression could not be detected. Therefore, prostacyclin, and not only nitric oxide, is a mediator of the vasorelaxation induced by acetylcholine in aortas from rats submitted to CLP.


Subject(s)
Acetylcholine/pharmacology , Epoprostenol/physiology , Nitric Oxide/physiology , Sepsis/physiopathology , Vasodilation , Animals , Aorta , Blood Pressure , Cecum/injuries , Cyclooxygenase Inhibitors/pharmacology , Endothelium, Vascular/physiology , Endothelium, Vascular/physiopathology , Epoprostenol/analysis , Indomethacin/pharmacology , Intestinal Perforation , Ligation , Male , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Rats , Rats, Wistar , Vasodilation/drug effects
10.
J Inorg Biochem ; 103(10): 1366-74, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19699534

ABSTRACT

Nitrosyl ruthenium complexes have been characterized as nitric oxide (NO) donors that induce relaxation in the denuded rat aorta. There are some differences in their vascular relaxation mechanisms compared with sodium nitroprusside. This study investigates whether the endothelium could interfere with the [Ru(terpy)(bdq)NO](3+)-TERPY-induced vascular relaxation, by analyzing the maximal relaxation (Emax) and potency (pD(2)) of TERPY. Vascular reactivity experiments showed that the endothelium negatively modulates (pD(2): 6.17+/-0.07) the TERPY relaxation in intact rat aortic rings compared with the denuded rat aorta (pD(2): 6.65+/-0.07). This effect is abolished by a non-selective NO-synthase (NOS) inhibitor L-NAME (pD(2): 6.46+/-0.10), by the superoxide anion (O(2)(-)) scavenger TIRON (pD(2): 6.49+/-0.08), and by an NOS cofactor BH(4) (pD(2): 6.80+/-0.10). The selective dye for O(2)(-) (DHE) shows that TERPY enhances O(2)(-) concentration in isolated endothelial cells (intensity of fluorescence (IF):11258.00+/-317.75) compared with the basal concentration (IF: 7760.67+/-381.50), and this enhancement is blocked by L-NAME (IF: 8892.33+/-1074.41). Similar results were observed in vascular smooth muscle cells (concentration of superoxide after TERPY: 2.63+/-0.17% and after TERPY+L-NAME: -4.63+/-0.14%). Considering that TERPY could induce uncoupling NOS, thus producing O(2)(-), we have also investigated the involvement of prostanoids in the negative modulation of the endothelium. The non-selective cyclooxygenase (COX) inhibitor indomethacin and the selective tromboxane (TXA(2)) receptor antagonist SQ29548 reduce the effect of the endothelium on TERPY relaxation (pD(2) INDO: 6.80+/-0.17 and SQ29548: 6.85+/-0.15, respectively). However, a selective prostaglandin F(2alpha) receptor antagonist (AH6809) does not change the endothelium effect. Moreover, TERPY enhances the concentration of TXA(2) stable metabolite (TXB(2)), but this effect is blocked by L-NAME and TIRON. The present findings indicate that TERPY induces uncoupling of eNOS, enhancing O(2)(-) concentration. This enhancement in O(2)(-) concentration induces COX activation, producing TXA(2), which negatively modulates the rat aorta relaxation induced by the NO donor TERPY.


Subject(s)
Aorta/enzymology , Endothelium, Vascular/enzymology , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Nitroso Compounds/pharmacology , Ruthenium/pharmacology , Vasodilation/drug effects , Animals , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Male , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Donors/chemistry , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitroprusside/pharmacology , Nitroso Compounds/chemistry , Prostaglandin-Endoperoxide Synthases/metabolism , Rats , Rats, Wistar , Ruthenium/chemistry , Superoxides/metabolism
11.
Eur J Pharmacol ; 616(1-3): 183-91, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19540222

ABSTRACT

Pimarane-type diterpenes were described to exert antispasmodic and relaxant activities. Based on this observation we hypothesized that the diterpene ent-8(14),15-pimaradien-3beta-ol (PA-3beta-ol) induced vascular relaxation. With this purpose, the present work investigates the mechanisms involved in the vasorelaxant effect of the pimarane-type diterpene PA-3beta-ol. Vascular reactivity experiments, using standard muscle bath procedures, were performed in isolated aortic rings from male Wistar rats. Cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3AM. PA-3beta-ol (10, 50 and 100 micromol/l) inhibited phenylephrine and KCl-induced contraction in either endothelium-intact or denuded rat aortic rings. PA-3beta-ol also reduced CaCl(2)-induced contraction in Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 micromol/l). PA-3beta-ol (1-300 micromol/l) concentration dependently relaxed phenylephrine-pre-contracted rings with intact or denuded endothelium. The diterpene also relaxed KCl-pre-contracted rings with intact or denuded endothelium. Moreover, Ca(2+) mobilization study showed that PA-3beta-ol (100 micromol/l) and verapamil (1 micromol/l) inhibited the increase in Ca(2+)-concentration in smooth muscle and endothelial cells induced by phenylephrine (10 micromol/l) or KCl (60 mmol/l). Pre-incubation of intact or denuded aortic rings with N(G)-nitro-l-arginine methyl ester (L-NAME, 100 micromol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 micromol/l) produced a rightward displacement of the PA-3beta-ol concentration-response curves. On the other hand, 7-nitroindazole (100 micromol/l), 1400 W (1 micromol/l), indomethacin (10 micromol/l) and tetraethylammonium (1 mmol/l) did not affect PA-3beta-ol-induced relaxation. Collectively, our results provide evidence that the effects elicited by PA-3beta-ol involve extracellular Ca(2+) influx blockade. Its effects are also partly mediated by the activation of NO-cGMP pathway.


Subject(s)
Abietanes/pharmacology , Aorta/drug effects , Aorta/physiology , Vasodilation/drug effects , Animals , Aorta/cytology , Aorta/metabolism , Calcium/metabolism , Calcium Chloride/pharmacology , Cyclic GMP/metabolism , Enzyme Inhibitors/pharmacology , Fluorescent Dyes/metabolism , In Vitro Techniques , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Microscopy, Confocal , Muscle Contraction/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Nitric Oxide/metabolism , Phenylephrine/pharmacology , Potassium Chloride/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Time Factors
12.
Free Radic Biol Med ; 46(9): 1298-307, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19248829

ABSTRACT

Mounting evidence indicates that structural and functional vascular changes associated with two-kidney, one-clip (2K-1C) hypertension result, at least in part, from altered activity of matrix metalloproteinases (MMPs). Because MMPs are upregulated by increased formation of reactive oxygen species (ROS), we hypothesized that antioxidant approaches could attenuate the increases in MMP-2 expression/activity and the vascular dysfunction and remodeling associated with 2K-1C hypertension. Sham-operated or 2K-1C hypertensive rats were treated with tempol 18 mg/kg/day or apocyanin 25 mg/kg/day (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and -independent relaxation. Quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin sections. Aortic and systemic ROS levels were measured using dihydroethidine and thiobarbituric acid-reactive substances, respectively. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry, and immunohistochemistry. Tempol and apocyanin attenuated 2K-1C hypertension (181+/-20.8 and 192+/-17.6 mm Hg, respectively, versus 213+/-18 mm Hg in hypertensive controls; both p<0.05) and prevented the reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Tempol, but not apocyanin (p>0.05), prevented the vascular remodeling found in 2K-1C rats (all p<0.01). Tempol was more effective than apocyanin in attenuating hypertension-induced increases in oxidative stress (both p<0.05), MMP-2 levels, and MMP-2 activity in hypertensive rats (all p<0.05). Our results suggest that antioxidant approaches decrease MMP-2 upregulation and attenuate the vascular dysfunction and remodeling during 2K-1C hypertension.


Subject(s)
Acetophenones/administration & dosage , Antioxidants/administration & dosage , Cyclic N-Oxides/administration & dosage , Matrix Metalloproteinase 2/metabolism , Renal Artery/metabolism , Animals , Blood Pressure Determination , Dicarbethoxydihydrocollidine/analogs & derivatives , Dicarbethoxydihydrocollidine/metabolism , Hypertension, Renovascular/enzymology , Hypertension, Renovascular/pathology , Hypertension, Renovascular/physiopathology , Immunohistochemistry , Male , Matrix Metalloproteinase 2/genetics , Organ Culture Techniques , Oxidative Stress/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Renal Artery/pathology , Renal Artery/surgery , Spin Labels , Thiobarbiturates/metabolism , Vasodilation/drug effects , Vasodilation/physiology
13.
Nitric Oxide ; 20(3): 207-16, 2009 May.
Article in English | MEDLINE | ID: mdl-19291838

ABSTRACT

Nitric oxide (NO) in NTS plays an important role in regulating autonomic function to the cardiovascular system. Using the fluorescent dye DAF-2 DA, we evaluated the NO concentration in NTS. Brainstem slices of rats were loaded with DAF-2 DA, washed, fixed in paraformaldehyde and examined under fluorescent light. In different experimental groups, NTS slices were pre-incubated with 1 mM l-NAME (a non-selective NOS inhibitor), 1 mM d-NAME (an inactive enantiomere of l-NAME), 1 mM kynurenic acid (a non-selective ionotropic receptors antagonist) or 20 microM bicuculline (a selective GABAA receptors antagonist) before and during DAF-2 DA loading. Images were acquired using a confocal microscope and the intensity of fluorescence was quantified in three antero-posterior NTS regions. In addition, slices previously loaded with DAF-2 DA were incubated with NeuN or GFAP antibody. A semi-quantitative analysis of the fluorescence intensity showed that the basal NO concentration was similar in all antero-posterior aspects of the NTS (rostral intermediate, 15.5 +/- 0.8 AU; caudal intermediate, 13.2 +/- 1.4 AU; caudal commissural, 13.8 +/- 1.4 AU, n = 10). In addition, the inhibition of NOS and the antagonism of glutamatergic receptors decreased the NO fluorescence in the NTS. On the other hand, d-NAME did not affect the NO fluorescence and the antagonism of GABAA receptors increased the NO fluorescence in the NTS. It is important to note that the fluorescence for NO was detected mainly in neurons. These data show that the fluorescence observed after NTS loading with DAF-2 DA is a result of NO present in the NTS and support the concept that NTS neurons have basal NO production which is modulated by l-glutamate and GABA.


Subject(s)
Glutamic Acid/metabolism , Neurons/metabolism , Nitric Oxide/biosynthesis , gamma-Aminobutyric Acid/metabolism , Animals , Brain Stem/metabolism , Fluorescent Dyes , Microscopy, Fluorescence , Nitric Oxide/analysis , Rats
14.
Nitric Oxide ; 18(4): 287-95, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18307997

ABSTRACT

Sodium nitroprusside (SNP) is an endothelium-independent relaxant agent and its effect is attributed to its direct action on the vascular smooth muscle (VSM). Endothelium modulates the vascular tone through the release of vasoactive agents, such as NO. The aim of this study was to investigate the contribution of the endothelium on SNP vasorelaxation, NO release and Ca2+ mobilization. Vascular reactivity experiments showed that endothelium potentiates the SNP-relaxation in rat aortic rings and this effect was abolished by l-NAME. SNP-relaxation in intact endothelium aorta was inhibited by NOS inhibitors for the constitutive isoforms (cNOS). Furthermore, endogenous NO is involved on the SNP-effect and this endogenous NO is released by cNOS. Moreover, Ca2+ mobilization study shows that l-NAME inhibited the reduction of Ca2+-concentration in VSM cells and reduced the increase in Ca2+-concentration in endothelial cells induced by SNP. This enhancement in Ca2+-concentration in the endothelial cells is due to a voltage-dependent Ca2+ channels activation. The present findings indicate that the relaxation and [Ca2+]i decrease induced by SNP in VSM cells is potentiated by endothelial production of NO by cNOS-activation in rat aorta.


Subject(s)
Aorta/drug effects , Nitroprusside/pharmacology , Vasodilation/drug effects , Animals , Cells, Cultured , Endothelium/drug effects , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Indomethacin/pharmacology , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL