Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Microb Pathog ; 195: 106856, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153576

ABSTRACT

Biofilm formation is a major health concern and studies have been pursued to find compounds able to prevent biofilm establishment and remove pre-existing biofilms. While biosurfactants (BS) have been well-known for possessing antibiofilm activities, bioemulsifiers (BE) are still scarcely explored for this purpose. The present study aimed to evaluate the bioemulsifying properties of cell-free supernatants produced by Bacillaceae and Vibrio strains isolated from marine sponges and investigate their antiadhesive and antibiofilm activities against different pathogenic Gram-positive and Gram-negative bacteria. The BE production by the marine strains was confirmed by the emulsion test, drop-collapsing, oil-displacement, cell hydrophobicity and hemolysis assays. Notably, Bacillus cereus 64BHI1101 displayed remarkable emulsifying activity and the ultrastructure analysis of its BE extract (BE64-1) revealed the presence of structures typically observed in macromolecules composed of polysaccharides and proteins. BE64-1 showed notable antiadhesive and antibiofilm activities against Staphylococcus aureus, with a reduction of adherence of up to 100 % and a dispersion of biofilm of 80 %, without affecting its growth. BE64-1 also showed inhibition of Staphylococcus epidermidis and Escherichia coli biofilm formation and adhesion. Thus, this study provides a starting point for exploring the antiadhesive and antibiofilm activities of BE from sponge-associated bacteria, which could serve as a valuable tool for future research to combat S. aureus biofilms.


Subject(s)
Bacterial Adhesion , Biofilms , Emulsifying Agents , Porifera , Staphylococcus aureus , Biofilms/drug effects , Biofilms/growth & development , Porifera/microbiology , Animals , Bacterial Adhesion/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Emulsifying Agents/pharmacology , Emulsifying Agents/chemistry , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Escherichia coli/drug effects , Escherichia coli/physiology , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Bacillus cereus/physiology , Hemolysis , Surface-Active Agents/pharmacology , Surface-Active Agents/metabolism , Vibrio/drug effects , Vibrio/physiology , Vibrio/metabolism , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/physiology
2.
Beilstein J Nanotechnol ; 14: 893-903, 2023.
Article in English | MEDLINE | ID: mdl-37674544

ABSTRACT

The main goal of this work was to evaluate the therapeutic potential of green superparamagnetic iron oxide nanoparticles (SPIONs) produced with coconut water for treating cutaneous leishmaniasis caused by Leishmania amazonensis. Optical and electron microscopy techniques were used to evaluate the effects on cell proliferation, infectivity percentage, and ultrastructure. SPIONs were internalized by both parasite stages, randomly distributed in the cytosol and located mainly in membrane-bound compartments. The selectivity index for intracellular amastigotes was more than 240 times higher compared to current drugs used to treat the disease. The synthesized SPIONs showed promising activity against Leishmania and can be considered a strong candidate for a new therapeutic approach for treating leishmaniases.

3.
Pharmaceutics ; 15(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37111599

ABSTRACT

Searching for new alternatives for treating leishmaniasis, we present the synthesis, characterization, and biological evaluation against Leishmania amazonensis of the new ZnCl2(H3)2 complex. H3 is 22-hydrazone-imidazoline-2-yl-chol-5-ene-3ß-ol, a well-known bioactive molecule functioning as a sterol Δ24-sterol methyl transferase (24-SMT) inhibitor. The ZnCl2(H3)2 complex was characterized by infrared, UV-vis, molar conductance measurements, elemental analysis, mass spectrometry, and NMR experiments. The biological results showed that the free ligand H3 and ZnCl2(H3)2 significantly inhibited the growth of promastigotes and intracellular amastigotes. The IC50 values found for H3 and ZnCl2(H3)2 were 5.2 µM and 2.5 µM for promastigotes, and 543 nM and 32 nM for intracellular amastigotes, respectively. Thus, the ZnCl2(H3)2 complex proved to be seventeen times more potent than the free ligand H3 against the intracellular amastigote, the clinically relevant stage. Furthermore, cytotoxicity assays and determination of selectivity index (SI) revealed that ZnCl2(H3)2 (CC50 = 5 µΜ, SI = 156) is more selective than H3 (CC50 = 10 µΜ, SI = 20). Furthermore, as H3 is a specific inhibitor of the 24-SMT, free sterol analysis was performed. The results showed that H3 was not only able to induce depletion of endogenous parasite sterols (episterol and 5-dehydroepisterol) and their replacement by 24-desalkyl sterols (cholesta-5,7,24-trien-3ß-ol and cholesta-7,24-dien-3ß-ol) but also its zinc derivative resulting in a loss of cell viability. Using electron microscopy, studies on the fine ultrastructure of the parasites showed significant differences between the control cells and parasites treated with H3 and ZnCl2(H3)2. The inhibitors induced membrane wrinkle, mitochondrial injury, and abnormal chromatin condensation changes that are more intense in the cells treated with ZnCl2(H3)2.

4.
Toxins (Basel) ; 14(11)2022 11 19.
Article in English | MEDLINE | ID: mdl-36422980

ABSTRACT

Snake venoms are complex cocktails of non-toxic and toxic molecules that work synergistically for the envenoming outcome. Alongside the immediate consequences, chronic manifestations and long-term sequelae can occur. Recently, extracellular vesicles (EVs) were found in snake venom. EVs mediate cellular communication through long distances, delivering proteins and nucleic acids that modulate the recipient cell's function. However, the biological roles of snake venom EVs, including possible cross-organism communication, are still unknown. This knowledge may expand the understanding of envenoming mechanisms. In the present study, we isolated and characterized the EVs from Bothrops jararaca venom (Bj-EVs), giving insights into their biological roles. Fresh venom was submitted to differential centrifugation, resulting in two EV populations with typical morphology and size range. Several conserved EV markers and a subset of venom related EV markers, represented mainly by processing enzymes, were identified by proteomic analysis. The most abundant protein family observed in Bj-EVs was 5'-nucleotidase, known to be immunosuppressive and a low abundant and ubiquitous toxin in snake venoms. Additionally, we demonstrated that mammalian cells efficiently internalize Bj-EVs. The commercial antibothropic antivenom partially recognizes Bj-EVs and inhibits cellular EV uptake. Based on the proteomic results and the in vitro interaction assays using macrophages and muscle cells, we propose that Bj-EVs may be involved not only in venom production and processing but also in host immune modulation and long-term effects of envenoming.


Subject(s)
Bothrops , Crotalid Venoms , Extracellular Vesicles , Animals , Crotalid Venoms/chemistry , Proteomics , Proteins , Snake Venoms , Mammals
5.
Sci Rep ; 12(1): 11313, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35788652

ABSTRACT

Leishmaniasis is a neglected disease caused by protozoan parasites of the Leishmania genus. Benzylamines are a class of compounds selectively designed to inhibit the squalene synthase (SQS) that catalyzes the first committed reaction on the sterol biosynthesis pathway. Herein, we studied seven new benzylamines (SBC 37-43) against Leishmania amazonensis. After the first screening of cell viability, two inhibitors (SBC 39 and SBC 40) were selected. Against intracellular amastigotes, SBC 39 and SBC 40 presented selectivity indexes of 117.7 and 180, respectively, indicating high selectivity. Analysis of the sterol composition revealed a depletion of endogenous 24-alkylated sterols such as episterol and 5-dehydroepisterol, with a concomitant accumulation of fecosterol, implying a disturbance in cellular lipid content. This result suggests a blockade of de novo sterol synthesis at the level of SQS and C-5 desaturase. Furthermore, physiological analysis and electron microscopy revealed three main alterations: (1) in the mitochondrion; (2) the presence of lipid bodies and autophagosomes; and (3) the appearance of projections in the plasma membrane. In conclusion, our results support the notion that benzylamines have a potent effect against Leishmania amazonensis and should be an exciting novel pharmaceutical lead for developing new chemotherapeutic alternatives to treat leishmaniasis.


Subject(s)
Leishmania mexicana , Leishmania , Benzylamines/pharmacology , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Oxidative Stress , Sterols/metabolism
6.
Article in English | MEDLINE | ID: mdl-32152072

ABSTRACT

The new complexes Zn(ITZ)2Cl2 (1) and Zn(ITZ)2(OH)2 (2) were synthetized by a reaction of itraconazole with their respective zinc salts under reflux. These Zn-ITZ complexes were characterized by elemental analyses, molar conductivity, mass spectrometry, 1H and 13C{1H} nuclear magnetic resonance, and UV-vis and infrared spectroscopies. The antiparasitic and antifungal activity of Zn-ITZ complexes was evaluated against three protozoans of medical importance, namely, Leishmania amazonensis, Trypanosoma cruzi, and Toxoplasma gondii, and two fungi, namely, Sporothrix brasiliensis and Sporothrix schenckii The Zn-ITZ complexes exhibited a broad spectrum of action, with antiparasitic and antifungal activity in low concentrations. The strategy of combining zinc with ITZ was efficient to enhance ITZ activity since Zn-ITZ-complexes were more active than the azole alone. This study opens perspectives for future applications of these Zn-ITZ complexes in the treatment of parasitic diseases and sporotrichosis.


Subject(s)
Antifungal Agents/pharmacology , Antiparasitic Agents/pharmacology , Itraconazole/pharmacology , Zinc/pharmacology , Leishmania/drug effects , Leishmania mexicana/drug effects , Microbial Sensitivity Tests , Parasitic Sensitivity Tests , Sporothrix/drug effects , Toxoplasma/drug effects , Trypanosoma cruzi/drug effects
7.
Apoptosis ; 22(9): 1169-1188, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28685254

ABSTRACT

Treatment of leishmaniasis involves the use of antimonials, miltefosine, amphotericin B or pentamidine. However, the side effects of these drugs and the reports of drug-resistant parasites demonstrate the need for new treatments that are safer and more efficacious. Histone deacetylase inhibitors are a new class of compounds with potential to treat leishmaniasis. Herein, we evaluated the effects of KH-TFMDI, a novel histone deacetylase inhibitor, on Leishmania amazonensis promastigotes and intracellular amastigotes. The IC50 values of this compound for promastigotes and intracellular amastigotes were 1.976 and 1.148 µM, respectively, after 72 h of treatment. Microscopic analyses revealed that promastigotes became elongated and thinner in response to KH-TFMDI, indicating changes in cytoskeleton organization. Immunofluorescence microscopy, western blotting and flow cytometry using an anti-acetylated tubulin antibody revealed an increase in the expression of acetylated tubulin. Furthermore, transmission electron microscopy revealed several ultrastructural changes, such as (a) mitochondrial swelling, followed by the formation of many vesicles inside the matrix; (b) presence of lipid bodies randomly distributed through the cytoplasm; (c) abnormal chromatin condensation; and (d) formation of blebs on the plasma membrane. Physiological studies for mitochondrial function, flow cytometry with propidium iodide and TUNEL assay confirmed the alterations in the mitochondrial metabolism, cell cycle, and DNA fragmentation, respectively, which could result to cell death by mechanisms related to apoptosis-like. All these together indicate that histone deacetylases are promising targets for the development of new drugs to treat Leishmania, and KH-TFMDI is a promising drug candidate that should be tested in vivo.


Subject(s)
Benzylidene Compounds/pharmacology , Cell Death/drug effects , Cytoskeleton/drug effects , Histone Deacetylase Inhibitors/pharmacology , Indoles/pharmacology , Leishmania/drug effects , Mitochondria/drug effects , Sirtuins/antagonists & inhibitors , Animals , Antiparasitic Agents/pharmacology , Antiparasitic Agents/toxicity , Apoptosis/drug effects , Benzylidene Compounds/toxicity , Cell Cycle Checkpoints/drug effects , Cell Survival/drug effects , Cytoskeleton/metabolism , Histone Deacetylase Inhibitors/toxicity , Indoles/toxicity , Inhibitory Concentration 50 , Leishmania/cytology , Leishmania/growth & development , Leishmania/ultrastructure , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Microtubules/drug effects , Microtubules/metabolism , Oxidative Stress/drug effects
8.
Mem Inst Oswaldo Cruz ; 110(1): 48-55, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25742263

ABSTRACT

Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.


Subject(s)
Cell Proliferation/drug effects , Growth Inhibitors/pharmacology , Tomatine/analogs & derivatives , Tomatine/pharmacology , Trypanosomatina/drug effects , Cell Membrane/drug effects , Cholesterol/analysis , Solanum lycopersicum/parasitology , Methyltransferases/drug effects , Microscopy, Electron, Transmission , Plant Diseases/parasitology , Sterols/analysis , Sterols/biosynthesis , Trypanosomatina/metabolism , Trypanosomatina/ultrastructure
9.
Mem. Inst. Oswaldo Cruz ; 110(1): 48-55, 03/02/2015. tab, graf
Article in English | LILACS | ID: lil-741623

ABSTRACT

Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Catheterization/methods , Intestinal Obstruction/pathology , Intestinal Obstruction/therapy , Intestine, Small/pathology , Biopsy , Constriction, Pathologic , Endoscopy, Digestive System , Treatment Outcome
10.
PLoS One ; 8(12): e83247, 2013.
Article in English | MEDLINE | ID: mdl-24376670

ABSTRACT

Leishmaniasis, caused by protozoan parasites of the Leishmania genus, is one of the most prevalent neglected tropical diseases. It is endemic in 98 countries, causing considerable morbidity and mortality. Pentavalent antimonials are the first line of treatment for leishmaniasis except in India. In resistant cases, miltefosine, amphotericin B and pentamidine are used. These treatments are unsatisfactory due to toxicity, limited efficacy, high cost and difficult administration. Thus, there is an urgent need to develop drugs that are efficacious, safe, and more accessible to patients. Trypanosomatids, including Leishmania spp. and Trypanosoma cruzi, have an essential requirement for ergosterol and other 24-alkyl sterols, which are absent in mammalian cells. Inhibition of ergosterol biosynthesis is increasingly recognized as a promising target for the development of new chemotherapeutic agents. The aim of this work was to investigate the antiproliferative, physiological and ultrastructural effects against Leishmania amazonensis of itraconazole (ITZ) and posaconazole (POSA), two azole antifungal agents that inhibit sterol C14α-demethylase (CYP51). Antiproliferative studies demonstrated potent activity of POSA and ITZ: for promastigotes, the IC50 values were 2.74 µM and 0.44 µM for POSA and ITZ, respectively, and for intracellular amastigotes, the corresponding values were 1.63 µM and 0.08 µM, for both stages after 72 h of treatment. Physiological studies revealed that both inhibitors induced a collapse of the mitochondrial membrane potential (ΔΨm), which was consistent with ultrastructural alterations in the mitochondrion. Intense mitochondrial swelling, disorganization and rupture of mitochondrial membranes were observed by transmission electron microscopy. In addition, accumulation of lipid bodies, appearance of autophagosome-like structures and alterations in the kinetoplast were also observed. In conclusion, our results indicate that ITZ and POSA are potent inhibitors of L. amazonensis and suggest that these drugs could represent novel therapies for the treatment of leishmaniasis, either alone or in combination with other agents.


Subject(s)
Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Itraconazole/pharmacology , Leishmania mexicana/drug effects , Life Cycle Stages/drug effects , Mitochondria/drug effects , Triazoles/pharmacology , Antifungal Agents/pharmacology , Drug Repositioning , Inhibitory Concentration 50 , Leishmania mexicana/enzymology , Leishmania mexicana/ultrastructure , Membrane Potential, Mitochondrial/drug effects , Microscopy, Electron, Transmission , Mitochondria/enzymology , Mitochondria/ultrastructure , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Sterol 14-Demethylase/metabolism
11.
Exp Parasitol ; 135(1): 153-65, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23845259

ABSTRACT

Parasitic protozoa of the Leishmania genus cause leishmaniasis, an important complex of tropical diseases that affect about 12 million people around the world. The drugs used to treat leishmaniasis are pentavalent antimonials, miltefosine, amphotericin B and pentamidine. In the present study, we evaluated the effect of a novel alkyl phosphocholine-dinitroaniline hybrid molecule, TC95, against Leishmania amazonensis promastigotes and intracellular amastigotes. Antiproliferative assays indicated that TC95 is a potent inhibitor of promastigotes and intracellular amastigotes with IC50 values of 2.6 and 1.2 µM, respectively. Fluorescence microscopy with anti-α-tubulin antibody revealed changes in the cytoskeleton, whilst scanning electron microscopy showed alterations in the shape, plasma membrane, length of the flagellum, and cell cycle. Flow cytometry confirmed the cell cycle arrest mainly in G1 phase, however a significant population appeared in sub G0/G1 and super-G2. The alterations in the plasma membrane integrity were confirmed by fluorometric analysis using Sytox Blue. Transmission electron microscopy also revealed an accumulation of lipid bodies, confirmed by fluorescence microscopy and fluorometric analysis using Nile Red. Important lesions were also observed in organelles such as mitochondrion, endoplasmic reticulum and Golgi complex. In summary, our study suggests that TC95, an alkyl phosphocholine-trifluralin hybrid molecule, is a promising novel compound against L. amazonensis.


Subject(s)
Aniline Compounds/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania mexicana/drug effects , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Trifluralin/analogs & derivatives , Trifluralin/pharmacology , Aniline Compounds/chemistry , Aniline Compounds/toxicity , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/toxicity , Cell Cycle Checkpoints/drug effects , Cell Membrane/drug effects , Cytoskeleton/drug effects , Flow Cytometry , Histocytochemistry , Humans , Inclusion Bodies/drug effects , Inhibitory Concentration 50 , Leishmania mexicana/cytology , Leishmania mexicana/ultrastructure , Leishmaniasis, Diffuse Cutaneous/parasitology , Macrophages, Peritoneal/drug effects , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Microscopy, Interference , Phosphorylcholine/chemistry , Phosphorylcholine/toxicity , Trifluralin/chemistry , Trifluralin/toxicity
12.
Int J Antimicrob Agents ; 39(4): 326-31, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22226653

ABSTRACT

Leishmaniasis is one of the most serious worldwide diseases caused by protozoan parasites of the Leishmania genus, affecting millions of people around the world. All currently available treatments present severe toxic side effects, require long-term compliance, cause serious side effects and are uncomfortable for patients. Leishmania amazonensis, a species endemic to Brazil, causes severe localised or diffuse skin lesions in humans. Owing to the unsatisfactory nature of the currently available chemotherapies, new approaches have been assessed for improved therapeutic intervention strategies against leishmaniasis. Miltefosine is an alkylphospholipid analogue that exhibits potent activity against the different clinical manifestations of leishmaniasis. Thus, the aim of this study was to investigate the long-term efficacy of miltefosine in BALB/c mice infected with L. amazonensis owing to the lack of a profound study demonstrating its dose-dependent and long-term effects. It was observed that animals treated with 20-50 mg/kg/day of miltefosine exhibited a significant dose-dependent reduction in lesion size; furthermore, in mice receiving higher doses, lesions disappeared after the end of treatment. To confirm a possible parasitological cure, mice up to 250 days after the end of treatment were analysed. No lesions or presence of parasite DNA were found in mice treated with 30, 40 and 50 mg/kg/day of miltefosine. In summary, these results show that miltefosine may be used to treat cutaneous leishmaniasis caused by L. amazonensis, alone or as combination therapy.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/pathogenicity , Leishmaniasis, Cutaneous/drug therapy , Phosphorylcholine/analogs & derivatives , Animals , Antiprotozoal Agents/administration & dosage , Azure Stains/chemistry , DNA, Protozoan/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Leishmania/chemistry , Leishmania/genetics , Leishmaniasis, Cutaneous/parasitology , Meglumine/pharmacology , Meglumine Antimoniate , Mice , Mice, Inbred BALB C , Organometallic Compounds/pharmacology , Parasite Load , Phosphorylcholine/administration & dosage , Phosphorylcholine/pharmacology , Time Factors , Ulcer/drug therapy , Ulcer/parasitology
13.
Mol Biol Int ; 2011: 876021, 2011.
Article in English | MEDLINE | ID: mdl-22091415

ABSTRACT

Amiodarone (AMIO), the most frequently antiarrhythmic drug used for the symptomatic treatment of chronic Chagas' disease patients with cardiac compromise, has recently been shown to have also specific activity against fungi, Trypanosoma cruzi and Leishmania. In this work, we characterized the effects of AMIO on proliferation, mitochondrial physiology, and ultrastructure of Leishmania amazonensis promastigotes and intracellular amastigotes. The IC(50) values were 4.21 and 0.46 µM against promastigotes and intracellular amastigotes, respectively, indicating high selectivity for the clinically relevant stage. We also found that treatment with AMIO leads to a collapse of the mitochondrial membrane potential (ΔΨm) and to an increase in the production of reactive oxygen species, in a dose-dependent manner. Fluorescence microscopy of cells labeled with JC-1, a marker for mitochondrial energization, and transmission electron microscopy confirmed severe alterations of the mitochondrion, including intense swelling and modification of its membranes. Other ultrastructural alterations included (1) presence of numerous lipid-storage bodies, (2) presence of large autophagosomes containing part of the cytoplasm and membrane profiles, sometimes in close association with the mitochondrion and endoplasmic reticulum, and (3) alterations in the chromatin condensation and plasma membrane integrity. Taken together, our results indicate that AMIO is a potent inhibitor of L. amazonensis growth, acting through irreversible alterations in the mitochondrial structure and function, which lead to cell death by necrosis, apoptosis and/or autophagy.

14.
J Infect Chemother ; 17(4): 563-70, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21264486

ABSTRACT

Three quinuclidine-based squalene synthase (SQS) inhibitors (BPQ-OH, E5700, and ER-119884) were evaluated against five Candida tropicalis strains with different susceptibility profiles to fluconazole (FLC), itraconazole (ITC), terbinafine (TRB), and amphotericin B (AMB). Although the quinuclidine derivatives were inactive against most C. tropicalis strains tested at concentrations up to 16 µg/ml, E5700 and ER-119884 showed antifungal activity against C. tropicalis ATCC 28707, a strain resistant to FLC, ITC, and AMB, with IC(50) and IC(90) values (i.e., the minimum inhibitory concentrations of the drugs determined as the lowest drug concentrations leading to a 50 and 90% of reduction in turbidity at 492 nm, respectively, after 48 h of incubation) of 1 and 4 µg/ml, respectively. Analysis of free sterols showed that non-treated C. tropicalis ATCC 28707 cells contained only 14-methylated sterols and that treatment with E5700 or ER-119884 led to a marked reduction of squalene content and the complete disappearance of the endogenous sterols. The fatty acid and phospholipid profiles in C. tropicalis ATCC 28707 cells grown in the presence of E5700 and ER-119884 were also markedly altered, with a large increase in the content of linolenic acid (C18:3), associated with a reduction in the content of linoleic (C18:2) and oleic (C18:1) acids. Treatment of C. tropicalis ATCC 28707 with E5700 or ER-119884 IC(50) values induced several ultrastructural alterations, including a marked increase in the thickness of the cell wall and the appearance of a large number of electron-dense vacuoles. In conclusion, our results indicated that E5700 and ER-119884 inhibited the growth and altered the lipid prolife and the ultrastructure of a multiple drug-resistant C. tropicalis strain. Therefore, such compounds could act as leads for the development of new treatment options against multidrug resistant Candida species.


Subject(s)
Candida tropicalis/drug effects , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Fatty Acids/metabolism , Pyridines/pharmacology , Quinuclidines/pharmacology , Amphotericin B/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida tropicalis/chemistry , Candida tropicalis/cytology , Candida tropicalis/metabolism , Cell Proliferation/drug effects , Drug Resistance, Multiple, Fungal , Fatty Acids/chemistry , Fatty Acids/classification , Fluconazole/pharmacology , Gas Chromatography-Mass Spectrometry , Histocytochemistry , Inhibitory Concentration 50 , Itraconazole/pharmacology , Lipid Metabolism/drug effects , Microscopy, Electron, Transmission , Pyridines/chemistry , Quinuclidines/chemistry
15.
Interdiscip Perspect Infect Dis ; 2009: 642502, 2009.
Article in English | MEDLINE | ID: mdl-19680554

ABSTRACT

Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB) that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a) statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b) bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c) zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS), which catalyzes the first committed step in sterol biosynthesis, (d) allylamines, inhibitors of squalene epoxidase, (e) azoles, which inhibit C14alpha-demethylase, and (f) azasterols, which inhibit Delta(24(25))-sterol methyltransferase (SMT). Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures), and their effects on protozoan structural organization (as evaluted by light and electron microscopy) and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take place in the organization of the kinetoplast DNA network and on the protozoan cell cycle. In addition, apoptosis-like and autophagic processes induced by several of the inhibitors tested led to parasite death.

16.
BMC Microbiol ; 9: 74, 2009 Apr 20.
Article in English | MEDLINE | ID: mdl-19379501

ABSTRACT

BACKGROUND: Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment.The purpose of this study was to evaluate the antifungal activity of inhibitors of Delta24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5alpha-pregnan-3beta-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes. RESULTS: AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 microg.ml-1 for AZA and 2 microg.ml-1 for EIL, and the MIC90 was 2 microg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. CONCLUSION: Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole-resistant strains.


Subject(s)
Candida/drug effects , Enzyme Inhibitors/pharmacology , Lanosterol/analogs & derivatives , Methyltransferases/antagonists & inhibitors , Pregnanediol/analogs & derivatives , Animals , Antifungal Agents/pharmacology , Candida/growth & development , Candida/ultrastructure , Chlorocebus aethiops , Drug Resistance, Fungal , Lanosterol/pharmacology , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Pregnanediol/pharmacology , Vero Cells
17.
Curr Pharm Des ; 14(9): 925-38, 2008.
Article in English | MEDLINE | ID: mdl-18473841

ABSTRACT

Parasitic protozoa such as Leishmania, Trypanosoma, Plasmodium, Toxoplasma gondii, Giardia and Trichomonas are able to cause several diseases affecting millions of people around the world with dramatic consequences to the socio-economic life of the affected countries. Diseases like malaria, leishmaniasis and trypanosomiasis have been classified by the World Health Organization as neglected diseases, because they have been almost completely forgotten by the governments as well as the pharmaceutical companies. The specific chemotherapy currently employed for the treatment of these diseases has serious limitations due to lack of efficacy, toxic side effects, growth of drug-resistance and high costs. Thus, it is urgent to develop new chemotherapeutic agents that are more effective, safe and accessible. In this context, several works have been focused on understanding the effect of different drug-treatments on these parasitic protozoa. Organelles and structures such as mitochondrion, kinetoplast, apicoplast, glycosome, acidocalcisome, hydrogenosome, plasma membrane and the cytoskeleton have been studied using different approaches to identify new targets for the development of new chemotherapeutic agents that are required. Some studies on alterations in the fine structure, as assayed using electron microscopy, have indicated the nature of lesions induced by several drugs, allowing deductions on possible modes of action. Here, we briefly review the available data of the effects of several drugs on the ultrastructure of parasitic protozoa and show how electron microscopy can contribute to elucidate the different mechanisms of these anti-parasitic drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Eukaryota/drug effects , Animals , Drug Delivery Systems , Eukaryota/metabolism , Eukaryota/ultrastructure , Humans , Microscopy, Electron/methods , Organelles/drug effects , Organelles/metabolism , Organelles/ultrastructure , Protozoan Infections/drug therapy
18.
Braz. j. morphol. sci ; 23(1): 87-98, jan.-mar. 2006. ilus, tab
Article in English | LILACS | ID: lil-467600

ABSTRACT

Apoptosis is an essential physiological process that plays a critical role in development and tissue homeostasis in multicellular organisms, but which is also observed in several eukaryotic microorganisms such as yeast and protozoa. Here, the authors briefly review the most used techniques to detect apoptosis in mammalian cells, especially those that can be applied to parasitic protozoa after different conditions such as drugtreatment. Apoptosis-like processes have been described in protozoa which present mitochondria, such as members of the Kinetoplastida and Apicomplexa groups as well as in protozoa which do not have a mitochondrion, as Entamoeba, Trichomonas and Giardia do. These observations are of interest from an evolutive point of view, especially due to the fact that the participation of the mitochondria in apoptosis has been extensively analyzed in several biological systems. The authors also reviewed the available data showing that several drugs in use as anti-protozoa agents, as well as others which are in the development phase, kill the protozoa through an apoptotic-like process.


Subject(s)
Apoptosis , Apoptosis , Leishmania , Leishmania/cytology , Necrosis , Phosphatidylserines , Trypanosoma , Apoptosis/physiology , Cell Death , Drug Therapy , Phosphatidylserines/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL