Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 115(24): 7940-9, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21619042

ABSTRACT

Glycosyl hydrolases are enzymes capable of breaking the glycosidic linkage of polysaccharides and have considerable industrial and biotechnological applications. Driven by the later applications, it is frequently desirable that glycosyl hydrolases display stability and activity under extreme environment conditions, such as high temperatures and extreme pHs. Here, we present X-ray structure of the hyperthermophilic laminarinase from Rhodothermus marinus (RmLamR) determined at 1.95 Å resolution and molecular dynamics simulation studies aimed to comprehend the molecular basis for the thermal stability of this class of enzymes. As most thermostable proteins, RmLamR contains a relatively large number of salt bridges, which are not randomly distributed on the structure. On the contrary, they form clusters interconnecting ß-sheets of the catalytic domain. Not all salt bridges, however, are beneficial for the protein thermostability: the existence of charge-charge interactions permeating the hydrophobic core of the enzymes actually contributes to destabilize the structure by facilitating water penetration into hydrophobic cavities, as can be seen in the case of mesophilic enzymes. Furthermore, we demonstrate that the mobility of the side-chains is perturbed differently in each class of enzymes. The side-chains of loop residues surrounding the catalytic cleft in the mesophilic laminarinase gain mobility and obstruct the active site at high temperature. By contrast, thermophilic laminarinases preserve their active site flexibility, and the active-site cleft remains accessible for recognition of polysaccharide substrates even at high temperatures. The present results provide structural insights into the role played by salt-bridges and active site flexibility on protein thermal stability and may be relevant for other classes of proteins, particularly glycosyl hydrolases.


Subject(s)
Cellulases/chemistry , Molecular Dynamics Simulation , Rhodothermus/enzymology , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Molecular Sequence Data , Protein Stability , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Temperature
2.
Biochemistry ; 44(47): 15578-84, 2005 Nov 29.
Article in English | MEDLINE | ID: mdl-16300407

ABSTRACT

The enzyme beta-xylosidase from Trichoderma reesei, a member of glycosil hydrolase family 3 (GH3), is a glycoside hydrolase which acts at the glycosidic linkages of 1,4-beta-xylooligosaccharides and that also exhibits alpha-l-arabinofuranosidase activity on 4-nitrophenyl alpha-l-arabinofuranoside. In this work, we show that the enzyme forms monomers in solution and derive the low-resolution molecular envelope of the beta-xylosidase from small-angle X-ray scattering (SAXS) data using the ab initio simulated annealing algorithm. The radius of gyration and the maximum dimension of the beta-xylosidase are 30.3 +/- 0.2 and 90 +/- 5 A, respectively. In contrast to the fold of the only two structurally characterized members of GH3, the barley beta-d-glucan exohydrolase and beta-hexosaminidase from Vibrio cholerae, which have respectively two or one distinct domains, the shape of the beta-xylosidase indicates the presence of three distinct structural modules. Domain recognition algorithms were used to show that the C-terminal part of the amino acid sequence of the protein forms the third domain. Circular dichroism spectroscopy and secondary structure prediction programs demonstrate that this additional domain adopts a predominantly beta conformation.


Subject(s)
Trichoderma/enzymology , Xylosidases/chemistry , Algorithms , Circular Dichroism , Models, Molecular , Protein Conformation , Protein Structure, Secondary , Scattering, Radiation , Solutions , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL