Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 9(1): 11514, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31395922

ABSTRACT

The second order nonlinear optical response of gold nanoprisms arrays is investigated by means of second harmonic generation (SHG) experiments and simulations. The polarization dependence of the nonlinear response exhibits a 6-fold symmetry, attributed to the local field enhancement through the excitation of the surface plasmon resonances in bow-tie nanoantennas forming the arrays. Experiments show that for polarization of the input light producing excitation of the plasmonic resonances in the bow-tie nanoantennas, the SHG signal is enhanced; this despite the fact that the linear absorption spectrum is not dependent on polarization. The results are confirmed by electrodynamic simulations which demonstrate that SHG is also determined by the local field distribution in the nanoarrays. Moreover, the maximum of SHG intensity is observed at slightly off-resonance excitation, as implemented in the experiments, showing a close relation between the polarization dependence and the structure of the material, additionally revealing the importance of the presence of non-normal electric field components as under focused beam and oblique illumination.

2.
Nanotechnology ; 26(29): 295701, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26135968

ABSTRACT

The study of the third-order optical nonlinear response exhibited by a composite containing gold nanoparticles and silicon quantum dots nucleated by ion implantation in a high-purity silica matrix is presented. The nanocomposites were explored as an integrated configuration containing two different ion-implanted distributions. The time-resolved optical Kerr gate and z-scan techniques were conducted using 80 fs pulses at a 825 nm wavelength; while the nanosecond response was investigated by a vectorial two-wave mixing method at 532 nm with 1 ns pulses. An ultrafast purely electronic nonlinearity was associated to the optical Kerr effect for the femtosecond experiments, while a thermal effect was identified as the main mechanism responsible for the nonlinear optical refraction induced by nanosecond pulses. Comparative experimental tests for examining the contribution of the Au and Si distributions to the total third-order optical response were carried out. We consider that the additional defects generated by consecutive ion irradiations in the preparation of ion-implanted samples do not notably modify the off-resonance electronic optical nonlinearities; but they do result in an important change for near-resonant nanosecond third-order optical phenomena exhibited by the closely spaced nanoparticle distributions.

3.
Bone ; 50(1): 276-88, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22086137

ABSTRACT

Diabetes mellitus (DM) may alter bone remodeling, as osteopenia and osteoporosis are among the complications. Moreover, DM increases the risk and severity of chronic inflammatory periodontal disease, in which bone resorption occurs. Broad evidence suggests that chronic inflammation can contribute to the development of DM and its complications. Hyperglycemia is a hallmark of DM that may contribute to sustained inflammation by increasing proinflammatory cytokines, which are known to cause insulin resistance, via toll-like receptor (TLR)-4-mediated mechanisms. However, the mechanisms by which bone-related complications develop in DM are still unknown. Studies done on the effect of high glucose concentrations on osteoblast functions are contradictory because some suggest increases (although others suggest reductions) in the biomineralization process. Therefore, we evaluated the effect of high glucose levels on biomineralization and inflammation markers in a human osteoblastic cell line. Cells were treated with either physiological 5.5 mM or increasing concentrations of glucose up to 24 mM, and we determined the following: i) the quantity and quality of calcium-deposit crystals in culture and ii) the expression of the following: a) proteins associated with the process of biomineralization, b) the receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG), c) cytokines IL1, IL6, IL8, IL10, MCP-1 and TNF alpha, and d) TLR-2, -3, -4 and -9. Our results show that high glucose concentrations (12 mM and particularly 24 mM) alter the biomineralization process in osteoblastic cells and provoke the following: i) a rise in mineralization, ii) an increase in the mRNA expression of RANKL and a decrease of OPG, iii) an increase in the mRNA expression of osteocalcin, bone sialoprotein and the transcription factor Runx2, iv) a diminished quality of the mineral, and v) an increase in the expression of IL1beta, IL6, IL8, MCP-1 and IL10 mRNAs. In addition we found that both high glucose levels and hyperosmotic conditions provoked TLR-2, -3, -4 and -9 overexpression in osteoblastic cells, suggesting that they are susceptible to osmotic stress.


Subject(s)
Calcification, Physiologic/drug effects , Glucose/pharmacology , Osteoblasts/drug effects , Osteoblasts/physiology , Alkaline Phosphatase/metabolism , Bone Remodeling/drug effects , Calcification, Physiologic/physiology , Calcium/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Diabetes Mellitus/physiopathology , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , RANK Ligand/genetics , RANK Ligand/metabolism , RNA, Messenger/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
4.
Nanotechnology ; 22(35): 355710, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21828891

ABSTRACT

The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

5.
Mycopathologia ; 171(2): 139-49, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20582631

ABSTRACT

Fusarium head blight (FHB) is an important disease throughout many of the world wheat-growing areas that have humid to semi-humid climate. The infection happens mainly during the anthesis of the wheat, when there have been favorable conditions of moisture and temperature. The direct relation of the infection to environmental factors makes possible the formulation of mathematical models that predict the disease. The causal agent of the FHB of the spike of wheat is attributed principally to Fusarium graminearum. High economic losses due yield decrease have been recorded in Argentina. In the present work, 67 isolates of Fusarium spp. were obtained from samples of wheat grains from Pampas region from 15 locations distributed in Buenos Aires, Entre Ríos, Santa Fe and Córboba provinces during 2006 and 2007 wheat-growing seasons. The identification of species from monosporic isolates was carried out by morphological characterization and use of species-specific PCR-based assays. Both identification criteria were necessary and complementary for the species determination, since in some cases the molecular identification was not specific. Scanty presence of F. graminearum was observed in 2006 wheat-growing season coinciding with the lack of favorable meteorological conditions for producing FHB infection events. High presence of F. graminearum isolates was observed in 2007 wheat-growing season, in accordance with moderate incidence of the disease according to spatial distribution of FHB incidence values. The aim of this report was to identify the causal agent of the FHB disease by different taxonomic criteria and to relate its occurrence with disease incidence values predicted by a weather-based model in Argentina.


Subject(s)
Biodiversity , Fusarium/classification , Fusarium/isolation & purification , Plant Diseases/microbiology , Triticum/microbiology , Argentina , Climate , DNA, Fungal/genetics , Fusarium/cytology , Fusarium/genetics , Microscopy , Models, Theoretical , Polymerase Chain Reaction , Weather
SELECTION OF CITATIONS
SEARCH DETAIL