Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Robot AI ; 9: 880547, 2022.
Article in English | MEDLINE | ID: mdl-36226257

ABSTRACT

Social robotics represents a branch of human-robot interaction dedicated to developing systems to control the robots to operate in unstructured environments with the presence of human beings. Social robots must interact with human beings by understanding social signals and responding appropriately to them. Most social robots are still pre-programmed, not having great ability to learn and respond with actions adequate during an interaction with humans. Recently more elaborate methods use body movements, gaze direction, and body language. However, these methods generally neglect vital signs present during an interaction, such as the human emotional state. In this article, we address the problem of developing a system to turn a robot able to decide, autonomously, what behaviors to emit in the function of the human emotional state. From one side, the use of Reinforcement Learning (RL) represents a way for social robots to learn advanced models of social cognition, following a self-learning paradigm, using characteristics automatically extracted from high-dimensional sensory information. On the other side, Deep Learning (DL) models can help the robots to capture information from the environment, abstracting complex patterns from the visual information. The combination of these two techniques is known as Deep Reinforcement Learning (DRL). The purpose of this work is the development of a DRL system to promote a natural and socially acceptable interaction among humans and robots. For this, we propose an architecture, Social Robotics Deep Q-Network (SocialDQN), for teaching social robots to behave and interact appropriately with humans based on social signals, especially on human emotional states. This constitutes a relevant contribution for the area since the social signals must not only be recognized by the robot but help him to take action appropriated according to the situation presented. Characteristics extracted from people's faces are considered for extracting the human emotional state aiming to improve the robot perception. The development and validation of the system are carried out with the support of SimDRLSR simulator. Results obtained through several tests demonstrate that the system learned satisfactorily to maximize the rewards, and consequently, the robot behaves in a socially acceptable way.

2.
J Mol Model ; 23(10): 302, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28971260

ABSTRACT

The treatment of neuropathic pain is very complex and there are few drugs approved for this purpose. Among the studied compounds in the literature, sigma-1 receptor antagonists have shown to be promising. In order to develop QSAR studies applied to the compounds of 1-arylpyrazole derivatives, multivariate analyses have been performed in this work using partial least square (PLS) and artificial neural network (ANN) methods. A PLS model has been obtained and validated with 45 compounds in the training set and 13 compounds in the test set (r2training = 0.761, q2 = 0.656, r2test = 0.746, MSEtest = 0.132 and MAEtest = 0.258). Additionally, multi-layer perceptron ANNs (MLP-ANNs) were employed in order to propose non-linear models trained by gradient descent with momentum backpropagation function. Based on MSEtest values, the best MLP-ANN models were combined in a MLP-ANN consensus model (MLP-ANN-CM; r2test = 0.824, MSEtest = 0.088 and MAEtest = 0.197). In the end, a general consensus model (GCM) has been obtained using PLS and MLP-ANN-CM models (r2test = 0.811, MSEtest = 0.100 and MAEtest = 0.218). Besides, the selected descriptors (GGI6, Mor23m, SRW06, H7m, MLOGP, and µ) revealed important features that should be considered when one is planning new compounds of the 1-arylpyrazole class. The multivariate models proposed in this work are definitely a powerful tool for the rational drug design of new compounds for neuropathic pain treatment. Graphical abstract Main scaffold of the 1-arylpyrazole derivatives and the selected descriptors.


Subject(s)
Neuralgia/drug therapy , Pyrazoles/chemistry , Receptors, sigma/chemistry , Humans , Least-Squares Analysis , Neural Networks, Computer , Neuralgia/pathology , Quantitative Structure-Activity Relationship , Receptors, sigma/antagonists & inhibitors , Sigma-1 Receptor
3.
Neural Netw ; 24(1): 54-64, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20884173

ABSTRACT

Attention is a critical mechanism for visual scene analysis. By means of attention, it is possible to break down the analysis of a complex scene to the analysis of its parts through a selection process. Empirical studies demonstrate that attentional selection is conducted on visual objects as a whole. We present a neurocomputational model of object-based selection in the framework of oscillatory correlation. By segmenting an input scene and integrating the segments with their conspicuity obtained from a saliency map, the model selects salient objects rather than salient locations. The proposed system is composed of three modules: a saliency map providing saliency values of image locations, image segmentation for breaking the input scene into a set of objects, and object selection which allows one of the objects of the scene to be selected at a time. This object selection system has been applied to real gray-level and color images and the simulation results show the effectiveness of the system.


Subject(s)
Attention/physiology , Brain Mapping , Brain/physiology , Computer Simulation , Neural Networks, Computer , Pattern Recognition, Visual/physiology , Diagnostic Imaging , Humans , Nonlinear Dynamics , Photic Stimulation
4.
Chem Biol Drug Des ; 75(6): 632-40, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20565477

ABSTRACT

Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher's weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.


Subject(s)
Antipsychotic Agents/chemistry , Cannabinoids/chemistry , Neural Networks, Computer , Antipsychotic Agents/pharmacology , Cannabinoids/pharmacology , Cannabis/chemistry , Models, Chemical , Models, Molecular , Quantitative Structure-Activity Relationship , Quantum Theory
5.
Chaos ; 18(3): 033107, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19045445

ABSTRACT

In many real situations, randomness is considered to be uncertainty or even confusion which impedes human beings from making a correct decision. Here we study the combined role of randomness and determinism in particle dynamics for complex network community detection. In the proposed model, particles walk in the network and compete with each other in such a way that each of them tries to possess as many nodes as possible. Moreover, we introduce a rule to adjust the level of randomness of particle walking in the network, and we have found that a portion of randomness can largely improve the community detection rate. Computer simulations show that the model has good community detection performance and at the same time presents low computational complexity.


Subject(s)
Algorithms , Decision Making , Decision Support Techniques , Models, Statistical , Nonlinear Dynamics , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL