Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 658: 124226, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38744414

ABSTRACT

This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.


Subject(s)
Administration, Ophthalmic , Drug Delivery Systems , Eye Diseases , Nanoparticles , Suspensions , Humans , Eye Diseases/drug therapy , Drug Delivery Systems/methods , Animals , Solubility , Ophthalmology/methods
2.
Nanotechnology ; 35(33)2024 May 30.
Article in English | MEDLINE | ID: mdl-38749415

ABSTRACT

Candida auris, a rapidly emerging multidrug-resistant fungal pathogen, poses a global health threat, with cases reported in over 47 countries. Conventional detection methods struggle, and the increasing resistance ofC. auristo antifungal agents has limited treatment options. Nanoparticle-based therapies, utilizing materials like silver, carbon, zinc oxide, titanium dioxide, polymer, and gold, show promise in effectively treating cutaneous candidiasis. This review explores recent advancements in nanoparticle-based therapies, emphasizing their potential to revolutionize antifungal therapy, particularly in combatingC. aurisinfections. The discussion delves into mechanisms of action, combinations of nanomaterials, and their application against multidrug-resistant fungal pathogens, offering exciting prospects for improved clinical outcomes and reduced mortality rates. The aim is to inspire further research, ushering in a new era in the fight against multidrug-resistant fungal infections, paving the way for more effective and targeted therapeutic interventions.


Subject(s)
Antifungal Agents , Candidiasis , Drug Resistance, Multiple, Fungal , Nanoparticles , Humans , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Candidiasis/drug therapy , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Candida auris/drug effects , Animals , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use
3.
Article in English | MEDLINE | ID: mdl-38630254

ABSTRACT

We aimed to perform a comprehensive study on the development and characterization of silymarin (Syl)-loaded niosomes as potential drug delivery systems. The results demonstrate significant novelty and promising outcomes in terms of morphology, size distribution, encapsulation efficiency, in vitro release behavior, free energy profiles of Syl across the niosome bilayer, hydrogen bonding interactions, antimicrobial properties, cytotoxicity, and in vivo evaluations. The physical appearance, size, and morphology assessment of free niosomes and Syl-loaded niosomes indicated stable and well-formed vesicular structures suitable for drug delivery. Transmission electron microscopy (TEM) analysis revealed spherical shapes with distinct sizes for each formulation, confirming uniform distribution. Dynamic light scattering (DLS) analysis confirmed the size distribution results with higher polydispersity index for Syl-loaded niosomes. The encapsulation efficiency of Syl in the niosomes was remarkable at approximately 91%, ensuring protection and controlled release of the drug. In vitro release studies showed a sustained release profile for Syl-loaded niosomes, enhancing therapeutic efficacy over time. Free energy profiles analysis identified energy barriers hindering Syl permeation through the niosome bilayer, emphasizing challenges in drug delivery system design. Hydrogen bonding interactions between Syl and niosome components contributed to energy barriers, impacting drug permeability. Antimicrobial assessments revealed significant differences in inhibitory effects against S. aureus and E. coli. Cytotoxicity evaluations demonstrated the superior tumor-killing potential of Syl-loaded niosomes compared to free Syl. In vivo studies indicated niosome formulations' safety profiles in terms of liver and kidney parameters compared to bulk Syl, showcasing potential for clinical applications. Overall, this research highlights the promising potential of Syl-loaded niosomes as effective drug delivery systems with enhanced stability, controlled release, and improved therapeutic outcomes.

4.
Int J Biol Macromol ; 262(Pt 1): 130021, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331063

ABSTRACT

This review article highlights the innovative role of metal-organic frameworks (MOFs) in addressing global healthcare challenges related to microbial infections. MOFs, comprised of metal nodes and organic ligands, offer unique properties that can be applied in the treatment and diagnosis of these infections. Traditional methods, such as antibiotics and conventional diagnostics, face issues such as antibiotic resistance and diagnostic limitations. MOFs, with their highly porous and customizable structure, can encapsulate and deliver therapeutic or diagnostic molecules precisely. Their large surface area and customizable pore structures allow for sensitive detection and selective recognition of microbial pathogens. They also show potential in delivering therapeutic agents to infection sites, enabling controlled release and possible synergistic effects. However, challenges like optimizing synthesis techniques, enhancing stability, and developing targeted delivery systems remain. Regulatory and safety considerations for clinical translation also need to be addressed. This review not only explores the potential of MOFs in treating and diagnosing microbial infections but also emphasizes their unique approach and discusses existing challenges and future directions.


Subject(s)
Metal-Organic Frameworks , Anti-Bacterial Agents/therapeutic use , Porosity
5.
Nanoscale ; 16(6): 2713-2746, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38213285

ABSTRACT

Nanoniosome-based drug codelivery systems have become popular therapeutic instruments, demonstrating tremendous promise in cancer therapy, infection treatment, and other therapeutic domains. An emerging form of vesicular nanocarriers, niosomes are self-assembling vesicles composed of nonionic surfactants, along with cholesterol or other amphiphilic molecules. This comprehensive review focuses on how nanosystems may aid in making anticancer and antibacterial pharmaceuticals more stable and soluble. As malleable nanodelivery instruments, the composition, types, preparation procedures, and variables affecting the structure and stability of niosomes are extensively investigated. In addition, the advantages of dual niosomes for combination therapy and the administration of multiple medications simultaneously are highlighted. Along with categorizing niosomal drug delivery systems, a comprehensive analysis of various preparation techniques, including thin-layer injection, ether injection, and microfluidization, is provided. Dual niosomes for cancer treatment are discussed in detail regarding the codelivery of two medications and the codelivery of a drug with organic, plant-based bioactive compounds or gene agents. In addition, niogelosomes and metallic niosomal carriers for targeted distribution are discussed. The review also investigates the simultaneous delivery of bioactive substances and gene agents, including siRNA, microRNA, shRNA, lncRNA, and DNA. Additional sections discuss the use of dual niosomes for cutaneous drug delivery and treating leishmanial infections, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The study concludes by delineating the challenges and potential routes for nanoniosome-based pharmaceutical codelivery systems, which will be useful for nanomedicine practitioners and researchers.


Subject(s)
Antineoplastic Agents , Neoplasms , Liposomes/chemistry , Drug Delivery Systems/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Administration, Cutaneous , Combined Modality Therapy , Neoplasms/drug therapy
6.
J Trace Elem Med Biol ; 81: 127325, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922658

ABSTRACT

BACKGROUND: Nanotechnology has emerged as a transformative realm of exploration across diverse scientific domains. A particular focus lies on metal oxide nanoparticles, which boast distinctive physicochemical attributes on the nanoscale. Of note, green synthesis has emerged as a promising avenue, leveraging plant extracts as both reduction and capping agents. This approach offers environmentally friendly and cost-effective avenues for generating monodispersed nanoparticles with precise morphologies. METHODS: In this investigation, we embarked on the synthesis of Bismuth oxide nanoparticles, both in their pure form and doped with silver (Ag) and copper (Cu). This synthesis harnessed the potential of Biebersteinia multifida extract as a versatile reducing agent. To comprehensively characterize the synthesized nanoparticles, a suite of analytical techniques was employed, including energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, and Raman spectroscopy. RESULTS: The synthesized nanoparticles underwent a rigorous assessment. Their antibacterial attributes were probed, revealing a pronounced enhancement in antibiofilm activity against Pseudomonas aeruginosa and Staphylococcus aureus bacteria upon metal nanoparticle doping. Furthermore, their potential for combating cancer was scrutinized, with the nanoparticles exhibiting selective cytotoxicity towards cancer cells, U87, compared to normal 3T3 cells. Notably, among the doped nanoparticles, Cu-doped variants demonstrated the highest potency, further underscoring their promising potential. CONCLUSION: In conclusion, the present study underscores the efficacy of green synthesized Bismuth oxide nanoparticles, particularly those doped with Ag and Cu, in augmenting antibacterial efficacy, bolstering biofilm inhibition, and manifesting selective cytotoxicity against cancer cells. These findings portend a promising trajectory for these nanoparticles in the spheres of biomedicine and therapeutics. As we look ahead, a deeper elucidation of their mechanistic underpinnings and in vivo investigations are essential to fully unlock their potential for forthcoming biomedical applications.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Metal Nanoparticles , Animals , Mice , Spectroscopy, Fourier Transform Infrared , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Oxides , Plant Extracts/chemistry , Microbial Sensitivity Tests , X-Ray Diffraction
7.
Biomed Res Int ; 2023: 9933283, 2023.
Article in English | MEDLINE | ID: mdl-37621700

ABSTRACT

Numerous disorders go untreated owing to a lack of a suitable drug delivery technology or an appropriate therapeutic moiety, particularly when toxicities and side effects are a major concern. Treatment options for microbiological infections are not fulfilled owing to significant adverse effects or extended therapeutic options. Advanced therapy options, such as active targeting, may be preferable to traditional ways of treating infectious diseases. Niosomes can be defined as microscopic lamellar molecules formed by a mixture of cholesterol, nonionic surfactants (alkyl or dialkyl polyglycerol ethers), and sometimes charge-inducing agents. These molecules comprise both hydrophilic and hydrophobic moieties of varying solubilities. In this review, several pathogenic microbes such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Plasmodium, Leishmania, and Candida spp. have been evaluated. Also, the development of a proper niosomal formulation for the required application was discussed. This review also reviews that an optimal formulation is dependent on several aspects, including the choice of nonionic surfactant, fabrication process, and fabrication parameters. Finally, this review will give information on the effectiveness of niosomes in treating acute microbial infections, the mechanism of action of niosomes in combating microbial pathogens, and the advantages of using niosomes over other treatment modalities.


Subject(s)
Anesthetics, General , Drug-Related Side Effects and Adverse Reactions , Liposomes , Drug Delivery Systems , Candida
8.
Environ Sci Pollut Res Int ; 30(11): 31935-31953, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36456672

ABSTRACT

Digital elevation models (DEMs) from different sources have been widely utilized in watershed modeling and environment management. Yet, little is known about how DEMs from different data sources affect modeling results and management decisions. This paper presents new insights into how the DEMs from three different sources affect model-simulated flow, nitrate (NO3), phosphorus (P), and sediment by using the BASINS/HSPF watershed modeling system. It was found that DEM source-induced uncertainties in simulation results are higher than the DEM resolution-induced uncertainties regardless of watershed slope or delineation method. Moreover, DEM source introduces higher uncertainties in simulation results for automatically delineated low-gradient watersheds than high gradient watersheds. Sediment and NO3 concentrations were the most and the least sensitive water quality parameters, respectively, to DEM sources. The uncertainties in simulation results may be reduced by using the manual method for watershed delineation but they cannot be completely eliminated. It is recommended that high precision (such as NED) DEMs be employed especially for flat watersheds. The findings provide guidelines for selection of DEM source based on available resources.


Subject(s)
Models, Theoretical , Water Quality , Environmental Monitoring/methods , Information Sources , Computer Simulation
9.
Micromachines (Basel) ; 13(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36363855

ABSTRACT

A chemically modified carbon paste electrode, based on a CoMOF-graphene oxide (GO) and an ionic liquid of 1-methyl-3-butylimidazolium bromide (CoMOF-GO/1-M,3-BB/CPE), was fabricated for the simultaneous determination of dopamine (DA) and uric acid (UA). The prepared CoMOF/GO nanocomposite was characterized by field emission-scanning electron microscopy (FE-SEM), the X-ray diffraction (XRD) method, a N2 adsorption-desorption isotherm, and an energy dispersive spectrometer (EDS). The electrochemical sensor clearly illustrated catalytic activity towards the redox reaction of dopamine (DA), which can be authenticated by comparing the increased oxidation peak current with the bare carbon paste electrode. The CoMOF-GO/1-M,3-BB/CPE exhibits a wide linear response for DA in the concentration range of 0.1 to 300.0 µM, with a detection limit of 0.04 µM. The oxidation peaks' potential for DA and uric acid (UA) were separated well in the mixture containing the two compounds. This study demonstrated a simple and effective method for detecting DA and UA in real samples.

10.
Environ Res ; 205: 112510, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34875260

ABSTRACT

In the present study, Fe3O4@Au core-shell nanoparticles decorated on reduce graphene oxide (Fe3O4@Au/rGO) nanocomposite were synthesized using the reduction method by sodium citrate, Hummer's method, and hydrothermal method, respectively. The as-prepared nanostructures were characterized by X-ray diffraction (XRD), Energy Dispersive X-ray (EDX), transmission electron microscopy (TEM), scanning electron microscopy (SEM)to assess the surface features, crystallinity and morphological characteristics. These nanostructures were employed for photocatalytic degradation of crystal violet (CV), and amongst them, Fe3O4@Au/rGO nanocomposite offered the best results under the visible light irradiation and optimal conditions. The effect of the amount of nano-photocatalyst, initial CV concentration, the initial pH, temperature, stirring speed, and degradation time was evaluated individually. A 100% degradation was obtained after 1 min in the presence of 0.008 g nano-photocatalyst, and also 100% of degradation was achieved after 5 min in the presence of 0.005 g of the prepared nano-photocatalyst. After a few tests, its photocatalytic performance was retained, implying the superior stability of Fe3O4@Au/rGO nanocomposite. The kinetic study of photocatalytic degradation also indicated that the fit model for the kinetic reaction was the pseudo-second-order kinetic model. Finally, the photocatalytic degradation of real samples with synthesized nanocomposite showed promising results.


Subject(s)
Nanocomposites , Catalysis , Ferric Compounds , Graphite , Light , Nanocomposites/chemistry , Temperature
11.
Environ Sci Pollut Res Int ; 26(9): 8971-8991, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30719665

ABSTRACT

This paper presents findings on uncertainties, introduced through digital elevation model (DEM) resolution and DEM resampling, in watershed-scale flow and water quality (NO3, P, and total suspended sediment) simulations. The simulations were performed using the Better Assessment Science Integrating Point and Nonpoint Sources/Hydrological Simulation Program Fortran watershed modeling system for two representative study watersheds delineated with both the original DEMs of four different resolutions (including 3.5, 10, 30, and 100 m) and the resampled DEMs of three different resolutions (including 10, 30, and 100 m), creating 14 simulation scenarios. Parameter uncertainties were quantified by means of the GLUE approach and compared to input data uncertainties. Results from the 14 simulation scenarios showed that there was a common increasing trend in errors of simulated flow and water quality parameters when the DEM resolution became coarser. The errors involved in the watershed with a mild slope were found to be substantially (up to 10 times) greater than those of the other watershed with a relatively steep slope. It was also found that sediment was the most sensitive and NO3 was the least sensitive parameters to the variation in DEM resolution, as evidenced by the maximum normalized root mean square error (NRMSE) of 250% in the simulated sediment concentration and 11% in the simulated NO3 concentration, respectively. Moreover, results achieved from the resampled (particularly coarser) DEMs were significantly different from corresponding ones from original DEMs. By comparing uncertainties from different sources, it was found that the parameter-induced uncertainties were higher than the resolution-induced uncertainties particularly in simulated NO3 and P concentrations for studied watersheds. The findings provide new insights into the sensitivity and uncertainty of water quality parameters and their simulation results, serving as the guidelines for developing and implementing water quality management and watershed restoration plans.


Subject(s)
Fresh Water/chemistry , Hydrology/standards , Water Quality , Hydrology/methods , Models, Theoretical , Nitrates/analysis , Phosphorus/analysis , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...