Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 113
1.
medRxiv ; 2024 May 25.
Article En | MEDLINE | ID: mdl-38826243

Pathogen genomics can provide insights into disease transmission patterns, but new methods are needed to handle modern large-scale pathogen genome datasets. Genetically proximal viruses indicate epidemiological linkage and are informative about transmission events. Here, we leverage pairs of identical sequences using 114,298 SARS-CoV-2 genomes collected via sentinel surveillance from March 2021 to December 2022 in Washington State, USA, with linked age and residence information to characterize fine-scale transmission. The location of pairs of identical sequences is highly consistent with expectations from mobility and social contact data. Outliers in the relationship between genetic and mobility data can be explained by SARS-CoV-2 transmission between postal codes with male prisons, consistent with transmission between prison facilities. Transmission patterns between age groups vary across spatial scales. Finally, we use the timing of sequence collection to understand the age groups driving transmission. This work improves our ability to characterize transmission from large pathogen genome datasets.

2.
J Infect Dis ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38805234

BACKGROUND: The clinical severity of genital HSV-2 infection varies widely among infected persons with some experiencing frequent genital lesions while others are asymptomatic. The viral genital shedding rate is closely associated with and has been established as a surrogate marker of clinical severity. METHODS: To assess the relationship between viral genetics and shedding, we assembled a set of 145 persons who had the severity of their genital herpes quantified through determination of their HSV genital shedding rate. An HSV-2 sample from each person was sequenced and biallelic variants among these genomes were identified. RESULTS: We found no association between metrics of genome-wide variation in HSV-2 and shedding rate. A viral genome-wide association study (vGWAS) identified the minor alleles of three individual unlinked variants as significantly associated with higher shedding rate (p<8.4x10-5): C44973T (A512T), a non-synonymous variant in UL22 (glycoprotein H); A74534G, a synonymous variant in UL36 (large tegument protein); and T119283C, an intergenic variant. We also found an association between the total number of minor alleles for the significant variants and shedding rate (p=6.6x10-7). CONCLUSIONS: These results add to a growing body of literature for HSV suggesting a connection between viral genetic variation and clinically important phenotypes of infection.

4.
Nat Commun ; 15(1): 3207, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38615031

Knockout of the ORF8 protein has repeatedly spread through the global viral population during SARS-CoV-2 evolution. Here we use both regional and global pathogen sequencing to explore the selection pressures underlying its loss. In Washington State, we identified transmission clusters with ORF8 knockout throughout SARS-CoV-2 evolution, not just on novel, high fitness viral backbones. Indeed, ORF8 is truncated more frequently and knockouts circulate for longer than for any other gene. Using a global phylogeny, we find evidence of positive selection to explain this phenomenon: nonsense mutations resulting in shortened protein products occur more frequently and are associated with faster clade growth rates than synonymous mutations in ORF8. Loss of ORF8 is also associated with reduced clinical severity, highlighting the diverse clinical impacts of SARS-CoV-2 evolution.


COVID-19 , SARS-CoV-2 , Selection, Genetic , Humans , Phylogeny , SARS-CoV-2/genetics , Viral Proteins/genetics , Selection, Genetic/genetics
5.
bioRxiv ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38559000

The evolution of SARS-CoV-2 variants and their respective phenotypes represents an important set of tools to understand basic coronavirus biology as well as the public health implications of individual mutations in variants of concern. While mutations outside of Spike are not well studied, the entire viral genome is undergoing evolutionary selection, particularly the central disordered linker region of the nucleocapsid (N) protein. Here, we identify a mutation (G215C), characteristic of the Delta variant, that introduces a novel cysteine into this linker domain, which results in the formation of a disulfide bond and a stable N-N dimer. Using reverse genetics, we determined that this cysteine residue is necessary and sufficient for stable dimer formation in a WA1 SARS-CoV-2 background, where it results in significantly increased viral growth both in vitro and in vivo. Finally, we demonstrate that the N:G215C virus packages more nucleocapsid per virion and that individual virions are larger, with elongated morphologies.

6.
PLoS Pathog ; 20(3): e1012117, 2024 Mar.
Article En | MEDLINE | ID: mdl-38530853

SARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving local health departments to design interventions with limited information. We analyzed SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with epidemiological and cell phone mobility data to investigate fine scale spatiotemporal SARS-CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US county. We applied an approximate structured coalescent approach to model transmission within and between North King County and South King County alongside the rate of outside introductions into the county. Our phylodynamic analyses reveal that following stay-at-home orders, the epidemic trajectories of North and South King County began to diverge. We find that South King County consistently had more reported and estimated cases, COVID-19 hospitalizations, and longer persistence of local viral transmission when compared to North King County, where viral importations from outside drove a larger proportion of new cases. Using mobility and demographic data, we also find that South King County experienced a more modest and less sustained reduction in mobility following stay-at-home orders than North King County, while also bearing more socioeconomic inequities that might contribute to a disproportionate burden of SARS-CoV-2 transmission. Overall, our findings suggest a role for local-scale phylodynamics in understanding the heterogeneous transmission landscape.


COVID-19 , Epidemics , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Washington/epidemiology
7.
Clin Infect Dis ; 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38427848

BACKGROUND: Hematopoietic cell transplant (HCT) or chimeric antigen receptor T cell (CAR-T) therapy recipients have high morbidity from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are limited data on outcomes from SARS-CoV-2 infection shortly before cellular therapy and uncertainty whether to delay therapy. METHODS: We conducted a retrospective cohort study of patients with SARS-CoV-2 infection within 90 days prior to HCT or CAR-T therapy between January 2020 and November 2022. We characterized the kinetics of SARS-CoV-2 detection, clinical outcomes following cellular therapy, and impact on delays in cellular therapy. RESULTS: We identified 37 patients (n=15 allogeneic HCT, n=11 autologous HCT, n=11 CAR-T therapy) with SARS-CoV-2 infections within 90 days of cellular therapy. Most infections (73%) occurred between March and November 2022, when Omicron strains were prevalent. Most patients had asymptomatic (27%) or mild (68%) coronavirus disease 2019 (COVID-19). SARS-CoV-2 positivity lasted a median of 20.0 days [IQR, 12.5-26.25]. The median time from first positive SARS-CoV-2 test to cellular therapy was 45 days [IQR, 37.75-70]; one patient tested positive on the day of infusion. After cellular therapy, no patients had recrudescent SARS-CoV-2 infection or COVID-19-related complications. Cellular therapy delays related to SARS-CoV-2 infection occurred in 70% of patients for a median of 37 days. Delays were more common after allogeneic (73%) and autologous (91%) HCT compared to CAR-T cell therapy (45%). CONCLUSIONS: Patients with asymptomatic or mild COVID-19 may not require prolonged delays in cellular therapy in the context of contemporary circulating variants and availability of antiviral therapies.

8.
Nat Commun ; 15(1): 2175, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38467646

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.


Ad26COVS1 , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Amino Acids , Antibodies, Viral , Antibodies, Neutralizing
9.
J Virol ; 98(4): e0185823, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38445887

Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.


Artifacts , Ganglia, Sensory , Herpesvirus 1, Human , Sensory Receptor Cells , Sequence Analysis, RNA , Single-Cell Gene Expression Analysis , Virus Latency , Animals , Mice , Cell Death , Datasets as Topic , Ganglia, Sensory/immunology , Ganglia, Sensory/pathology , Ganglia, Sensory/virology , Herpes Simplex/immunology , Herpes Simplex/pathology , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , MicroRNAs/analysis , MicroRNAs/genetics , Reproducibility of Results , RNA, Viral/analysis , RNA, Viral/genetics , Sensory Receptor Cells/pathology , Sensory Receptor Cells/virology
10.
Transpl Infect Dis ; 26(1): e14223, 2024 Feb.
Article En | MEDLINE | ID: mdl-38191852

BACKGROUND: There are limited data on clinical outcomes associated with the use of bebtelovimab for the treatment of coronavirus disease 2019 (COVID-19) among cancer patients. We aimed to define the clinical characteristics and outcomes among patients receiving bebtelovimab as part of the COVID-19 therapeutics program at our cancer center. METHODS: This is a retrospective cohort study of immunosuppressed adult patients who received bebtelovimab at Fred Hutchinson Cancer Center between March 2022, and November 2022. We reviewed medical records to capture the date of the first positive COVID-19 test, clinical characteristics, outcomes, and follow-up COVID-19 testing for 60 days after the first positive. Persistent infection was defined as a positive test beyond day 30; these patients were reviewed beyond day 60. RESULTS: Among 93 patients who received bebtelovimab, 64 (69%) had hematologic malignancy. Sixty-nine (74%) patients received bebtelovimab within 2 days after diagnosis. Two (2%) patients were hospitalized, none required ICU care, and one patient died on day 52; although it is unknown if death was directly related to COVID-19. Ten (11%) patients had persistent COVID-19 infection; of these, four received additional COVID-19 therapy with either nirmatrelvir/ritonavir or remdesivir, and five out of six patients with sequencing data available had spike protein mutations associated with bebtelovimab resistance. CONCLUSION: A coordinated systems-based approach led to prompt initiation of bebtelovimab within two days of testing positive in most patients. We observed few hospitalizations or deaths. Persistent infection was noted in 11% of patients with four requiring additional therapies, highlighting a need for novel strategies to manage immunosuppressed patients.


Antibodies, Neutralizing , COVID-19 , Neoplasms , Adult , Humans , SARS-CoV-2 , COVID-19 Testing , Persistent Infection , Retrospective Studies , Neoplasms/complications , Neoplasms/drug therapy
11.
PLoS Pathog ; 19(11): e1011114, 2023 Nov.
Article En | MEDLINE | ID: mdl-38019897

The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.


HIV Infections , HIV-1 , Humans , Interleukin-10 , Inflammasomes , HIV-1/genetics , HIV Infections/drug therapy , HIV Infections/genetics , CD4-Positive T-Lymphocytes , Immunity, Innate/genetics , Genes, Tumor Suppressor , Gene Expression , DNA , Viral Load
12.
J Clin Microbiol ; 61(10): e0013823, 2023 10 24.
Article En | MEDLINE | ID: mdl-37728336

Rapid antigen tests (RATs) have become an invaluable tool for combating the COVID-19 pandemic. However, concerns have been raised regarding the ability of existing RATs to effectively detect emerging SARS-CoV-2 variants. We compared the performance of 10 commercially available, emergency use authorized RATs against the Delta and Omicron SARS-CoV-2 variants using both individual patient and serially diluted pooled clinical samples. The RATs exhibited lower sensitivity for Omicron samples when using PCR cycle threshold (CT) value (a rough proxy for RNA concentration) as the comparator. Interestingly, however, they exhibited similar sensitivity for Omicron and Delta samples when using quantitative antigen concentration as the comparator. We further found that the Omicron samples had lower ratios of antigen to RNA, which offers a potential explanation for the apparent lower sensitivity of RATs for that variant when using C T value as a reference. Our findings underscore the complexity in assessing RAT performance against emerging variants and highlight the need for ongoing evaluation in the face of changing population immunity and virus evolution.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , RNA
13.
Nat Commun ; 14(1): 4731, 2023 08 07.
Article En | MEDLINE | ID: mdl-37550333

Therapeutic options against SARS-CoV-2 are underutilized. Two oral drugs, molnupiravir and paxlovid (nirmatrelvir/ritonavir), have received emergency use authorization. Initial trials suggested greater efficacy of paxlovid, but recent studies indicated comparable potency in older adults. Here, we compare both drugs in two animal models; the Roborovski dwarf hamster model for severe COVID-19-like lung infection and the ferret SARS-CoV-2 transmission model. Dwarf hamsters treated with either drug survive VOC omicron infection with equivalent lung titer reduction. Viral RNA copies in the upper respiratory tract of female ferrets receiving 1.25 mg/kg molnupiravir twice-daily are not significantly reduced, but infectious titers are lowered by >2 log orders and direct-contact transmission is stopped. Female ferrets dosed with 20 or 100 mg/kg nirmatrelvir/ritonavir twice-daily show 1-2 log order reduction of viral RNA copies and infectious titers, which correlates with low nirmatrelvir exposure in nasal turbinates. Virus replication resurges towards nirmatrelvir/ritonavir treatment end and virus transmits efficiently (20 mg/kg group) or partially (100 mg/kg group). Prophylactic treatment with 20 mg/kg nirmatrelvir/ritonavir does not prevent spread from infected ferrets, but prophylactic 5 mg/kg molnupiravir or 100 mg/kg nirmatrelvir/ritonavir block productive transmission. These data confirm reports of similar efficacy in older adults and inform on possible epidemiologic benefit of antiviral treatment.


COVID-19 , SARS-CoV-2 , Animals , Female , Cricetinae , COVID-19 Drug Treatment , Ferrets , Ritonavir/pharmacology , Ritonavir/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Models, Animal
14.
Res Sq ; 2023 May 31.
Article En | MEDLINE | ID: mdl-37398105

It is of interest to pinpoint SARS-CoV-2 sequence features defining vaccine resistance. In the ENSEMBLE randomized, placebo-controlled phase 3 trial, estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were measured from 484 vaccine and 1,067 placebo recipients who acquired COVID-19 during the trial. In Latin America, where Spike diversity was greatest, VE was significantly lower against Lambda than against Reference and against all non-Lambda variants [family-wise error rate (FWER) p < 0.05]. VE also differed by residue match vs. mismatch to the vaccine-strain residue at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20). VE significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 different antibody-epitope escape scores and by 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccine recipient sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against viruses with greatest distances. These results help map antigenic specificity of in vivo vaccine protection.

15.
J Infect Dis ; 228(9): 1263-1273, 2023 11 02.
Article En | MEDLINE | ID: mdl-37466213

BACKGROUND: Remdesivir is approved for treatment of coronavirus disease 2019 (COVID-19) in nonhospitalized and hospitalized adult and pediatric patients. Here we present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance analyses from the phase 3 ACTT-1 randomized placebo-controlled trial conducted in adult participants hospitalized with COVID-19. METHODS: Swab samples were collected at baseline and longitudinally through day 29. SARS-CoV-2 genomes were sequenced using next-generation sequencing. Phenotypic analysis was conducted directly on participant virus isolates and/or using SARS-CoV-2 subgenomic replicons expressing mutations identified in the Nsp12 target gene. RESULTS: Among participants with both baseline and postbaseline sequencing data, emergent Nsp12 substitutions were observed in 12 of 31 (38.7%) and 12 of 30 (40.0%) participants in the remdesivir and placebo arms, respectively. No emergent Nsp12 substitutions in the remdesivir arm were observed in more than 1 participant. Phenotyping showed low to no change in susceptibility to remdesivir relative to wild-type Nsp12 reference for the substitutions tested: A16V (0.8-fold change in EC50), P323L + V792I (2.2-fold), C799F (2.5-fold), K59N (1.0-fold), and K59N + V792I (3.4-fold). CONCLUSIONS: The similar rate of emerging Nsp12 substitutions in the remdesivir and placebo arms and the minimal change in remdesivir susceptibility among tested substitutions support a high barrier to remdesivir resistance development in COVID-19 patients. Clinical Trials Registration. NCT04280705.


COVID-19 , Adult , Humans , Child , SARS-CoV-2/genetics , COVID-19 Drug Treatment , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Antiviral Agents/therapeutic use
16.
bioRxiv ; 2023 Jul 18.
Article En | MEDLINE | ID: mdl-37503290

Most individuals are latently infected with herpes simplex virus type 1 (HSV-1) and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent virus is also present in immune cells recovered from ganglia in a mouse model used for studying latency. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for this conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were nearexclusively detected in a mixed population of cells undergoing cell death. Specific loss of HSV1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained by inaccuracies in the data analyses.

17.
Open Forum Infect Dis ; 10(6): ofad306, 2023 Jun.
Article En | MEDLINE | ID: mdl-37383248

Persistent symptomatic coronavirus disease 2019 (COVID-19) is a distinct clinical entity among patients with hematologic cancer and/or profound immunosuppression. The optimal medical management is unknown. We describe 2 patients who had symptomatic COVID-19 for almost 6 months and were successfully treated in the ambulatory setting with extended courses of nirmatrelvir-ritonavir.

18.
Influenza Other Respir Viruses ; 17(6): e13166, 2023 Jun.
Article En | MEDLINE | ID: mdl-37346095

Respiratory syncytial virus (RSV) causes disproportionate morbidity and mortality in vulnerable populations. We tested residents of homeless shelters in Seattle, Washington for RSV in a repeated cross-sectional study as part of community surveillance for respiratory viruses. Of 15 364 specimens tested, 35 had RSV detected, compared to 77 with influenza. The most common symptoms for both RSV and influenza were cough and rhinorrhea. Many individuals with RSV (39%) and influenza (58%) reported that their illness significantly impacted their ability to perform their regular activities. RSV and influenza demonstrated similar clinical presentations and burden of illness in vulnerable populations living in congregate settings.


Ill-Housed Persons , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viruses , Humans , Influenza, Human/epidemiology , Respiratory Syncytial Virus Infections/diagnosis , Washington/epidemiology , Cross-Sectional Studies
19.
Microbiol Spectr ; 11(3): e0517622, 2023 06 15.
Article En | MEDLINE | ID: mdl-37199630

Hepatitis B virus (HBV) is a pathogen of major public health importance that is largely incurable once a chronic infection is established. Only humans and great apes are fully permissive to HBV infection, and this species restriction has impacted HBV research by limiting the utility of small animal models. To combat HBV species restrictions and enable more in vivo studies, liver-humanized mouse models have been developed that are permissive to HBV infection and replication. Unfortunately, these models can be difficult to establish and are expensive commercially, which has limited their academic use. As an alternative mouse model to study HBV, we evaluated liver-humanized NSG-PiZ mice and showed that they are fully permissive to HBV. HBV selectively replicates in human hepatocytes within chimeric livers, and HBV-positive (HBV+) mice secrete infectious virions and hepatitis B surface antigen (HBsAg) into blood while also harboring covalently closed circular DNA (cccDNA). HBV+ mice develop chronic infections lasting at least 169 days, which should enable the study of new curative therapies targeting chronic HBV, and respond to entecavir therapy. Furthermore, HBV+ human hepatocytes in NSG-PiZ mice can be transduced by AAV3b and AAV.LK03 vectors, which should enable the study of gene therapies that target HBV. In summary, our data demonstrate that liver-humanized NSG-PiZ mice can be used as a robust and cost-effective alternative to existing chronic hepatitis B (CHB) models and may enable more academic research labs to study HBV disease pathogenesis and antiviral therapy. IMPORTANCE Liver-humanized mouse models have become the gold standard for the in vivo study of hepatitis B virus (HBV), yet their complexity and cost have prohibited widespread use of existing models in research. Here, we show that the NSG-PiZ liver-humanized mouse model, which is relatively inexpensive and simple to establish, can support chronic HBV infection. Infected mice are fully permissive to hepatitis B, supporting both active replication and spread, and can be used to study novel antiviral therapies. This model is a viable and cost-effective alternative to other liver-humanized mouse models that are used to study HBV.


Hepatitis B, Chronic , Hepatitis B , Mice , Humans , Animals , Hepatitis B, Chronic/drug therapy , Hepatitis B virus/genetics , Hepatitis B/drug therapy , Hepatitis B Surface Antigens , Antiviral Agents/therapeutic use , DNA, Circular/therapeutic use , DNA, Viral/genetics
20.
PLoS Pathog ; 19(5): e1011308, 2023 05.
Article En | MEDLINE | ID: mdl-37126534

The global spread of the SARS-CoV-2 virus has resulted in emergence of lineages which impact the effectiveness of immunotherapies and vaccines that are based on the early Wuhan isolate. All currently approved vaccines employ the spike protein S, as it is the target for neutralizing antibodies. Here we describe two SARS-CoV-2 isolates with unusually large deletions in the N-terminal domain (NTD) of the spike. Cryo-EM structural analysis shows that the deletions result in complete reshaping of the NTD supersite, an antigenically important region of the NTD. For both spike variants the remodeling of the NTD negatively affects binding of all tested NTD-specific antibodies in and outside of the NTD supersite. For one of the variants, we observed a P9L mediated shift of the signal peptide cleavage site resulting in the loss of a disulfide-bridge; a unique escape mechanism with high antigenic impact. Although the observed deletions and disulfide mutations are rare, similar modifications have become independently established in several other lineages, indicating a possibility to become more dominant in the future. The observed plasticity of the NTD foreshadows its broad potential for immune escape with the continued spread of SARS-CoV-2.


COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Disulfides , Immunotherapy , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
...