Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(12): 8345-8379, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35500094

ABSTRACT

Balanced pan-class I phosphoinositide 3-kinase inhibition as an approach to cancer treatment offers the prospect of treating a broad range of tumor types and/or a way to achieve greater efficacy with a single inhibitor. Taking buparlisib as the starting point, the balanced pan-class I PI3K inhibitor 40 (NVP-CLR457) was identified with what was considered to be a best-in-class profile. Key to the optimization to achieve this profile was eliminating a microtubule stabilizing off-target activity, balancing the pan-class I PI3K inhibition profile, minimizing CNS penetration, and developing an amorphous solid dispersion formulation. A rationale for the poor tolerability profile of 40 in a clinical study is discussed.


Subject(s)
Antineoplastic Agents , Phosphatidylinositol 3-Kinases , Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Organic Chemicals , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
2.
J Med Chem ; 64(20): 15262-15279, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34648711

ABSTRACT

After identification of lead compound 6, 5-amino-1,4-oxazine BACE1 inhibitors were optimized in order to improve potency, brain penetration, and metabolic stability. Insertion of a methyl and a trifluoromethyl group at the 6-position of the 5-amino-1,4-oxazine led to 8 (NB-360), an inhibitor with a pKa of 7.1, a very low P-glycoprotein efflux ratio, and excellent pharmacological profile, enabling high central nervous system penetration and exposure. Fur color changes observed with NB-360 in efficacy studies in preclinical animal models triggered further optimization of the series. Herein, we describe the steps leading to the discovery of 3-chloro-5-trifluoromethyl-pyridine-2-carboxylic acid [6-((3R,6R)-5-amino-3,6-dimethyl-6-trifluoromethyl-3,6-dihydro-2H-[1,4]oxazin-3-yl)-5-fluoro-pyridin-2-yl]amide 15 (CNP520, umibecestat), an inhibitor with superior BACE1/BACE2 selectivity and pharmacokinetics. CNP520 reduced significantly Aß levels in mice and rats in acute and chronic treatment regimens without any side effects and thus qualified for Alzheimer's disease prevention studies in the clinic.


Subject(s)
Alzheimer Disease/prevention & control , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Oxazines/pharmacology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Cell Line , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Oxazines/chemical synthesis , Oxazines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
3.
J Med Chem ; 64(8): 4677-4696, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33844524

ABSTRACT

Starting from lead compound 4, the 1,4-oxazine headgroup was optimized to improve potency and brain penetration. Focusing at the 6-position of the 5-amino-1,4-oxazine, the insertion of a Me and a CF3 group delivered an excellent pharmacological profile with a pKa of 7.1 and a very low P-gp efflux ratio enabling high central nervous system (CNS) penetration and exposure. Various synthetic routes to access BACE1 inhibitors bearing a 5-amino-6-methyl-6-(trifluoromethyl)-1,4-oxazine headgroup were investigated. Subsequent optimization of the P3 fragment provided the highly potent N-(3-((3R,6R)-5-amino-3,6-dimethyl-6-(trifluoromethyl)-3,6-dihydro-2H-1,4-oxazin-3-yl)-4-fluorophenyl)-5-cyano-3-methylpicolinamide 54 (NB-360), able to reduce significantly Aß levels in mice, rats, and dogs in acute and chronic treatment regimens.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Enzyme Inhibitors/chemical synthesis , Picolinic Acids/chemical synthesis , Thiazines/chemical synthesis , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Brain/metabolism , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Half-Life , Humans , Mice , Molecular Dynamics Simulation , Oxazines/chemistry , Picolinic Acids/pharmacokinetics , Picolinic Acids/therapeutic use , Rats , Structure-Activity Relationship , Thiazines/pharmacokinetics , Thiazines/therapeutic use
4.
Nat Chem Biol ; 17(3): 280-290, 2021 03.
Article in English | MEDLINE | ID: mdl-33462494

ABSTRACT

Although most acute skin wounds heal rapidly, non-healing skin ulcers represent an increasing and substantial unmet medical need that urgently requires effective therapeutics. Keratinocytes resurface wounds to re-establish the epidermal barrier by transitioning to an activated, migratory state, but this ability is lost in dysfunctional chronic wounds. Small-molecule regulators of keratinocyte plasticity with the potential to reverse keratinocyte malfunction in situ could offer a novel therapeutic approach in skin wound healing. Utilizing high-throughput phenotypic screening of primary keratinocytes, we identify such small molecules, including bromodomain and extra-terminal domain (BET) protein family inhibitors (BETi). BETi induce a sustained activated, migratory state in keratinocytes in vitro, increase activation markers in human epidermis ex vivo and enhance skin wound healing in vivo. Our findings suggest potential clinical utility of BETi in promoting keratinocyte re-epithelialization of skin wounds. Importantly, this novel property of BETi is exclusively observed after transient low-dose exposure, revealing new potential for this compound class.


Subject(s)
Cell Cycle Proteins/genetics , Epidermis/drug effects , Re-Epithelialization/drug effects , Skin Ulcer/drug therapy , Small Molecule Libraries/pharmacology , Transcription Factors/genetics , Wounds, Nonpenetrating/drug therapy , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Disease Models, Animal , Epidermis/metabolism , Epidermis/pathology , Fluorescence Resonance Energy Transfer , Gene Expression Regulation , High-Throughput Screening Assays , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice , Mice, Inbred C57BL , Primary Cell Culture , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Precursors/antagonists & inhibitors , Protein Precursors/genetics , Protein Precursors/metabolism , Re-Epithelialization/genetics , Skin Ulcer/genetics , Skin Ulcer/metabolism , Skin Ulcer/pathology , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic , Wounds, Nonpenetrating/genetics , Wounds, Nonpenetrating/metabolism , Wounds, Nonpenetrating/pathology
5.
EMBO Mol Med ; 10(11)2018 11.
Article in English | MEDLINE | ID: mdl-30224383

ABSTRACT

The beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) initiates the generation of amyloid-ß (Aß), and the amyloid cascade leading to amyloid plaque deposition, neurodegeneration, and dementia in Alzheimer's disease (AD). Clinical failures of anti-Aß therapies in dementia stages suggest that treatment has to start in the early, asymptomatic disease states. The BACE-1 inhibitor CNP520 has a selectivity, pharmacodynamics, and distribution profile suitable for AD prevention studies. CNP520 reduced brain and cerebrospinal fluid (CSF) Aß in rats and dogs, and Aß plaque deposition in APP-transgenic mice. Animal toxicology studies of CNP520 demonstrated sufficient safety margins, with no signs of hair depigmentation, retina degeneration, liver toxicity, or cardiovascular effects. In healthy adults ≥ 60 years old, treatment with CNP520 was safe and well tolerated and resulted in robust and dose-dependent Aß reduction in the cerebrospinal fluid. Thus, long-term, pivotal studies with CNP520 have been initiated in the Generation Program.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Oxazines/therapeutic use , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/cerebrospinal fluid , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Astrocytes/metabolism , Brain/pathology , Cathepsin D/antagonists & inhibitors , Cathepsin D/metabolism , Cerebral Hemorrhage/pathology , Female , Hominidae/genetics , Humans , Inflammation/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Oxazines/blood , Oxazines/chemistry , Oxazines/pharmacology , Translational Research, Biomedical
6.
Bioorg Med Chem Lett ; 28(12): 2195-2200, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29764741

ABSTRACT

New amino-1,4-oxazine derived BACE-1 inhibitors were explored and various synthetic routes developed. The binding mode of the inhibitors was elucidated by co-crystallization of 4 with BACE-1 and X-ray analysis. Subsequent optimization led to inhibitors with low double digit nanomolar activity in a biochemical and single digit nanomolar potency in a cellular assays. To assess the inhibitors for their permeation properties and potential to cross the blood-brain-barrier a MDR1-MDCK cell model was successfully applied. Compound 8a confirmed the in vitro results by dose-dependently reducing Aß levels in mice in an acute treatment regimen.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Oxazines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Madin Darby Canine Kidney Cells/drug effects , Mice , Models, Molecular , Molecular Conformation , Oxazines/chemical synthesis , Oxazines/chemistry , Structure-Activity Relationship
7.
Mol Neurodegener ; 10: 44, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26336937

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia, the number of affected individuals is rising, with significant impacts for healthcare systems. Current symptomatic treatments delay, but do not halt, disease progression. Genetic evidence points to aggregation and deposition of amyloid-ß (Aß) in the brain being causal for the neurodegeneration and dementia typical of AD. Approaches to target Aß via inhibition of γ-secretase or passive antibody therapy have not yet resulted in substantial clinical benefits. Inhibition of BACE1 (ß-secretase) has proven a challenging concept, but recent BACE1inhibitors can enter the brain sufficiently well to lower Aß. However, failures with the first clinical BACE1 inhibitors have highlighted the need to generate compounds with appropriate efficacy and safety profiles, since long treatment periods are expected to be necessary in humans. RESULTS: Treatment with NB-360, a potent and brain penetrable BACE-1 inhibitor can completely block the progression of Aß deposition in the brains of APP transgenic mice, a model for amyloid pathology. We furthermore show that almost complete reduction of Aß was achieved also in rats and in dogs, suggesting that these findings are translational across species and can be extrapolated to humans. Amyloid pathology may be an initial step in a complex pathological cascade; therefore we investigated the effect of BACE-1 inhibition on neuroinflammation, a prominent downstream feature of the disease. NB-360 stopped accumulation of activated inflammatory cells in the brains of APP transgenic mice. Upon chronic treatment of APP transgenic mice, patches of grey hairs appeared. CONCLUSIONS: In a rapidly developing field, the data on NB-360 broaden the chemical space and expand knowledge on the properties that are needed to make a BACE-1 inhibitor potent and safe enough for long-term use in patients. Due to its excellent brain penetration, reasonable oral doses of NB-360 were sufficient to completely block amyloid-ß deposition in an APP transgenic mouse model. Data across species suggest similar treatment effects can possibly be achieved in humans. The reduced neuroinflammation upon amyloid reduction by NB-360 treatment supports the notion that targeting amyloid-ß pathology can have beneficial downstream effects on the progression of Alzheimer's disease.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Nerve Tissue Proteins/antagonists & inhibitors , Neuroprotective Agents/therapeutic use , Picolinic Acids/therapeutic use , Thiazines/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/physiology , Amyloid beta-Peptides/genetics , Animals , Aspartic Acid Endopeptidases/physiology , Astrocytes/drug effects , Astrocytes/pathology , Brain/drug effects , Brain/metabolism , Brain/pathology , CHO Cells , Cricetinae , Cricetulus , Dogs , Drug Evaluation, Preclinical , Female , Hair Color/drug effects , Humans , Mice , Mice, Transgenic , Microglia/drug effects , Microglia/pathology , Mutation , Nerve Tissue Proteins/physiology , Neuroprotective Agents/pharmacokinetics , Peptide Fragments/metabolism , Picolinic Acids/chemistry , Picolinic Acids/pharmacokinetics , Rats , Recombinant Fusion Proteins/metabolism , Thiazines/chemistry , Thiazines/pharmacokinetics
8.
Bioorg Med Chem Lett ; 23(19): 5300-6, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23981898

ABSTRACT

Previous structure based optimization in our laboratories led to the identification of a novel, high-affinity cyclic sulfone hydroxyethylamine-derived inhibitor such as 1 that lowers CNS-derived Aß following oral administration to transgenic APP51/16 mice. Herein we report SAR development in the S3 and S2' subsites of BACE1 for cyclic sulfoxide hydroxyethyl amine inhibitors, the synthetic approaches employed in this effort, and in vivo data for optimized compound such as 11d.


Subject(s)
Amyloid Precursor Protein Secretases/drug effects , Amyloid beta-Peptides/chemistry , Aspartic Acid Endopeptidases/drug effects , Drug Discovery , Ethanolamines/pharmacology , Sulfoxides/pharmacology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/blood , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain Chemistry , Crystallography, X-Ray , Cyclization , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Ethanolamines/chemistry , Female , Inhibitory Concentration 50 , Male , Mice , Molecular Structure , Rats , Structure-Activity Relationship , Substrate Specificity , Sulfoxides/chemistry
9.
J Med Chem ; 55(7): 3364-86, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22380629

ABSTRACT

Structure-based design of a series of cyclic hydroxyethylamine BACE1 inhibitors allowed the rational incorporation of prime- and nonprime-side fragments to a central core template without any amide functionality. The core scaffold selection and the structure-activity relationship development were supported by molecular modeling studies and by X-ray analysis of BACE1 complexes with various ligands to expedite the optimization of the series. The direct extension from P1-aryl- and heteroaryl moieties into the S3 binding pocket allowed the enhancement of potency and selectivity over cathepsin D. Restraining the design and synthesis of compounds to a physicochemical property space consistent with central nervous system drugs led to inhibitors with improved blood-brain barrier permeability. Guided by structure-based optimization, we were able to obtain highly potent compounds such as 60p with enzymatic and cellular IC(50) values of 2 and 50 nM, respectively, and with >200-fold selectivity over cathepsin D. Pharmacodynamic studies in APP51/16 transgenic mice at oral doses of 180 µmol/kg demonstrated significant reduction of brain Aß levels.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/metabolism , Cyclic S-Oxides/chemical synthesis , Ethylamines/chemical synthesis , Sulfones/chemical synthesis , Animals , Benzene Derivatives/chemical synthesis , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Blood-Brain Barrier/metabolism , Cell Line , Cricetinae , Cricetulus , Crystallography, X-Ray , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/pharmacology , Dogs , Drug Design , Ethylamines/chemistry , Ethylamines/pharmacology , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Indazoles/pharmacology , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Mice , Mice, Transgenic , Models, Molecular , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology
10.
Bioorg Med Chem Lett ; 21(7): 1942-7, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21388807

ABSTRACT

This Letter describes the de novo design of non-peptidic hydroxyethylamine (HEA) inhibitors of BACE-1 by elimination of P-gp contributing amide attachments. The predicted binding mode of the novel cyclic sulfone HEA core template was confirmed in a X-ray co-crystal structure. Inhibitors of sub-micromolar potency with an improved property profile over historic HEA inhibitors resulting in improved brain penetration are described.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Benzylamines/chemistry , Benzylamines/pharmacology , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Benzylamines/chemical synthesis , Crystallography, X-Ray , Cyclic S-Oxides/chemical synthesis , Cyclization , Enzyme Inhibitors/chemical synthesis , Models, Molecular , Molecular Structure , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 20(2): 603-7, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19963375

ABSTRACT

A series of macrocyclic peptidic BACE-1 inhibitors was designed. While potency on BACE-1 was rather high, the first set of compounds showed poor brain permeation and high efflux in the MDRI-MDCK assay. The replacement of the secondary benzylamino group with a phenylcyclopropylamino group maintained potency on BACE-1, while P-glycoprotein-mediated efflux was significantly reduced and brain permeation improved. Several compounds from this series demonstrated acute reduction of Abeta in human APP-wildtype transgenic (APP51/16) mice after oral administration.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Benzamides/chemistry , Brain/metabolism , Lactams/chemistry , Macrocyclic Compounds/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Benzamides/chemical synthesis , Benzamides/pharmacology , Binding Sites , Cell Line , Crystallography, X-Ray , Humans , Lactams/chemical synthesis , Lactams/pharmacology , Macrocyclic Compounds/pharmacology , Mice , Mice, Transgenic , Stereoisomerism , Structure-Activity Relationship
12.
J Pharmacol Exp Ther ; 327(2): 411-24, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18687920

ABSTRACT

Human beta-amyloid precursor protein (APP) transgenic mice are commonly used to test potential therapeutics for Alzheimer's disease. We have characterized the dynamics of beta-amyloid (Abeta) generation and deposition following gamma-secretase inhibition with compound LY-411575 [N(2)-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N(1)-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide]. Kinetic studies in preplaque mice distinguished a detergent-soluble Abeta pool in brain with rapid turnover (half-lives for Abeta40 and Abeta42 were 0.7 and 1.7 h) and a much more stable, less soluble pool. Abeta in cerebrospinal fluid (CSF) reflected the changes in the soluble brain Abeta pool, whereas plasma Abeta turned over more rapidly. In brain, APP C-terminal fragments (CTF) accumulated differentially. The half-lives for gamma-secretase degradation were estimated as 0.4 and 0.1 h for C99 and C83, respectively. Three different APP transgenic lines responded very similarly to gamma-secretase inhibition regardless of the familial Alzheimer's disease mutations in APP. Amyloid deposition started with Abeta42, whereas Abeta38 and Abeta40 continued to turn over. Chronic gamma-secretase inhibition lowered amyloid plaque formation to a different degree in different brain regions of the same mice. The extent was inversely related to the initial amyloid load in the region analyzed. No evidence for plaque removal below baseline was obtained. gamma-Secretase inhibition led to a redistribution of intracellular Abeta and an elevation of CTFs in neuronal fibers. In CSF, Abeta showed a similar turnover as in preplaque animals demonstrating its suitability as marker of newly generated, soluble Abeta in plaque-bearing brain. This study supports the use of APP transgenic mice as translational models to characterize Abeta-lowering therapeutics.


Subject(s)
Alanine/analogs & derivatives , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Azepines/pharmacology , Brain/metabolism , Enzyme Inhibitors/pharmacology , Alanine/pharmacology , Amyloid beta-Protein Precursor/analysis , Amyloid beta-Protein Precursor/genetics , Animals , Half-Life , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
13.
Eur J Pharmacol ; 540(1-3): 10-7, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16697367

ABSTRACT

The intramembrane-cleaving proteases (I-CLiPs) presenilin-1 and -2 (PS1 and PS2), signal peptide peptidase (SPP) and the Site-2 protease (S2P) catalyze critical steps in cell signaling and are implicated in diseases such as Alzheimer's disease, hepatitis C virus (HCV) infection and cholesterol homeostasis. Here we describe the development of a cellular assay based on cleavage of the transmembrane sequence of the HCV core protein precursor, releasing intra- and extra-cellular signals that represent sequential signal peptidase and SPP cleavage, respectively. We find that the SPP inhibitor (Z-LL)2-ketone (IC50 = 1.33 microM) and the gamma-secretase potent inhibitors NVP-AHW700-NX (IC50 = 51 nM) and LY411575 (IC50 = 61 nM) but not DAPT dose dependently inhibited SPP but not signal peptidase cleavage. Our data confirm that type II orientated substrates, like the HCV transmembrane sequence, are sequentially cleaved by signal peptidase then SPP. This dual assay provides a powerful tool to pharmacologically analyze sequential cleavage events of signal peptidase and SPP and their regulation.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Recombinant Fusion Proteins/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/genetics , Binding Sites/genetics , CHO Cells , Cell Line , Cricetinae , Cricetulus , Dipeptides/pharmacology , Endoplasmic Reticulum/metabolism , Extracellular Space/drug effects , Extracellular Space/metabolism , Hepacivirus/genetics , Hepacivirus/metabolism , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Luciferases/genetics , Luciferases/metabolism , Molecular Sequence Data , Mutation/genetics , Proteasome Endopeptidase Complex/metabolism , Recombinant Fusion Proteins/genetics , Sequence Homology, Amino Acid , Substrate Specificity , Transfection , Viral Proteins/genetics , Viral Proteins/metabolism
14.
Bioorg Med Chem Lett ; 14(10): 2451-7, 2004 May 17.
Article in English | MEDLINE | ID: mdl-15109631

ABSTRACT

Combination of structural elements from a potent Y5 antagonist (2) with thiazole fragments that exhibit weak Y5 affinities followed by lead optimisation led to the discovery of (5,6-dihydro-4H-3-thia-1-aza-benzo[e]azulen-2-yl)-piperidin-4-ylmethyl-amino and (4,5-dihydro-6-oxa-3-thia-1-aza-benzo[e]azulen-2-yl)-piperidin-4-ylmethyl-amino derivatives. Both classes of compounds are capable of delivering potent and selective orally and centrally bioavailable NPY Y5 receptor antagonists.


Subject(s)
Cycloheptanes/chemical synthesis , Cycloheptanes/pharmacokinetics , Receptors, Neuropeptide Y/antagonists & inhibitors , Administration, Oral , Animals , Azulenes , Biological Availability , Blood , Blood-Brain Barrier , Cycloheptanes/pharmacology , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/pharmacology , Hypothalamus , Inhibitory Concentration 50 , Rats , Structure-Activity Relationship
15.
J Biol Chem ; 278(19): 16528-33, 2003 May 09.
Article in English | MEDLINE | ID: mdl-12621027

ABSTRACT

Presenilin is implicated in the pathogenesis of Alzheimer's disease. It is thought to constitute the catalytic subunit of the gamma-secretase complex that catalyzes intramembrane cleavage of beta-amyloid precursor protein, the last step in the generation of amyloidogenic Abeta peptides. The latter are major constituents of amyloid plaques in the brain of Alzheimer's disease patients. Inhibitors of gamma-secretase are considered potential therapeutics for the treatment of this disease because they prevent production of Abeta peptides. Recently, we discovered a family of presenilin-type aspartic proteases. The founding member, signal peptide peptidase, catalyzes intramembrane cleavage of distinct signal peptides in the endoplasmic reticulum membrane of animals. In humans, the protease plays a crucial role in the immune system. Moreover, it is exploited by the hepatitis C virus for the processing of the structural components of the virion and hence is an attractive target for anti-infective intervention. Signal peptide peptidase and presenilin share identical active site motifs and both catalyze intramembrane proteolysis. These common features let us speculate that gamma-secretase inhibitors directed against presenilin may also inhibit signal peptide peptidase. Here we demonstrate that some of the most potent known gamma-secretase inhibitors efficiently inhibit signal peptide peptidase. However, we found compounds that showed higher specificity for one or the other protease. Our findings highlight the possibility of developing selective inhibitors aimed at reducing Abeta generation without affecting other intramembrane-cleaving aspartic proteases.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Endopeptidases/drug effects , Enzyme Inhibitors/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases , Enzyme Activation/drug effects , Enzyme Inhibitors/therapeutic use , Humans , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...