Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Mol Cancer Res ; 22(4): 360-372, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38236939

ABSTRACT

Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress. The unfolded protein response (UPR) pathway is typically engaged by tumor cells to favor adaptation to stress. PERK, an endoplasmic reticulum (ER) protein kinase and UPR effector is activated in tumor cells and contributes tumor cell adaptation by limiting protein translation and balancing redox stress. PERK also induces miRNAs that contribute to tumor adaptation. miR-211 and miR-216b were previously identified as PERK-ATF4-regulated miRNAs that regulate cell survival. We have identified another PERK-responsive miRNA, miR-217, with increased expression under prolonged ER stress. Key targets of miR-217 are identified as TRPM1, the host gene for miR-211 and EZH2. Evidence is provided that miR-217 expression is essential for the rapid loss of miR-211 in prolonged ER stress and provides a functional link for determining whether cells adapt to stress or commit to apoptosis. IMPLICATIONS: PERK-dependent induction of miR-217 limits accumulation and function of the prosurvival miRNA, miR-211, to establish cell fate and promote cell commitment to apoptosis.


Subject(s)
MicroRNAs , Neoplasms , TRPM Cation Channels , Humans , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Endoplasmic Reticulum Stress/genetics , Unfolded Protein Response , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/physiology , Neoplasms/genetics , Tumor Microenvironment , TRPM Cation Channels/genetics
2.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106052

ABSTRACT

Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translational control. However, a lack of technologies to enrich RAPs across many sample types has prevented systematic analysis of RAP number, dynamics, and functions. Here, we have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including DHX30 and LLPH, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development that is linked to the translation of genes with long coding sequences. Finally, we characterized ribosome composition remodeling during immune activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs ranging from those with neuroregulatory functions to those activated by immune stimuli, thereby providing critical insights into how ribosomes are remodeled.

3.
Nat Commun ; 14(1): 6332, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816716

ABSTRACT

Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Drug Repositioning , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Drug Combinations , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Cell Line, Tumor
4.
Nature ; 620(7972): 163-171, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495694

ABSTRACT

An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.


Subject(s)
Ambystoma mexicanum , Biological Evolution , Protein Biosynthesis , Regeneration , TOR Serine-Threonine Kinases , Animals , Humans , Mice , Ambystoma mexicanum/physiology , Amino Acid Sequence , Extremities/physiology , Regeneration/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/metabolism , Wound Healing , Mechanistic Target of Rapamycin Complex 1/metabolism , Species Specificity , Antioxidants/metabolism , Nutrients/metabolism , Polyribosomes/genetics , Polyribosomes/metabolism
5.
Elife ; 122023 Jun 12.
Article in English | MEDLINE | ID: mdl-37306301

ABSTRACT

The formation of paralogs through gene duplication is a core evolutionary process. For paralogs that encode components of protein complexes such as the ribosome, a central question is whether they encode functionally distinct proteins or whether they exist to maintain appropriate total expression of equivalent proteins. Here, we systematically tested evolutionary models of paralog function using the ribosomal protein paralogs Rps27 (eS27) and Rps27l (eS27L) as a case study. Evolutionary analysis suggests that Rps27 and Rps27l likely arose during whole-genome duplication(s) in a common vertebrate ancestor. We show that Rps27 and Rps27l have inversely correlated mRNA abundance across mouse cell types, with the highest Rps27 in lymphocytes and the highest Rps27l in mammary alveolar cells and hepatocytes. By endogenously tagging the Rps27 and Rps27l proteins, we demonstrate that Rps27- and Rps27l-ribosomes associate preferentially with different transcripts. Furthermore, murine Rps27 and Rps27l loss-of-function alleles are homozygous lethal at different developmental stages. However, strikingly, expressing Rps27 protein from the endogenous Rps27l locus or vice versa completely rescues loss-of-function lethality and yields mice with no detectable deficits. Together, these findings suggest that Rps27 and Rps27l are evolutionarily retained because their subfunctionalized expression patterns render both genes necessary to achieve the requisite total expression of two equivalent proteins across cell types. Our work represents the most in-depth characterization of a mammalian ribosomal protein paralog to date and highlights the importance of considering both protein function and expression when investigating paralogs.


Subject(s)
Ribosomal Proteins , Ribosomes , Animals , Mice , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Vertebrates/genetics , Genome , Mammals/genetics
6.
Cancer Res ; 83(1): 130-140, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36264168

ABSTRACT

Deregulation of neuroblastoma-derived myc (N-myc) is a leading cause of malignant brain tumors in children. To target N-myc-driven medulloblastoma, most research has focused on identifying genomic alterations or on the analysis of the medulloblastoma transcriptome. Here, we have broadly characterized the translatome of medulloblastoma and shown that N-myc unexpectedly drives selective translation of transcripts that promote protein homeostasis. Cancer cells are constantly exposed to proteotoxic stress associated with alterations in protein production or folding. It remains poorly understood how cancers cope with proteotoxic stress to promote their growth. Here, our data revealed that N-myc regulates the expression of specific components (∼5%) of the protein folding machinery at the translational level through the major cap binding protein, eukaryotic initiation factor eIF4E. Reducing eIF4E levels in mouse models of medulloblastoma blocked tumorigenesis. Importantly, targeting Hsp70, a protein folding chaperone translationally regulated by N-myc, suppressed tumor growth in mouse and human medulloblastoma xenograft models. These findings reveal a previously hidden molecular program that promotes medulloblastoma formation and identify new therapies that may have impact in the clinic. SIGNIFICANCE: Translatome analysis in medulloblastoma shows that N-myc drives selective translation of transcripts that promote protein homeostasis and that represent new therapeutic vulnerabilities.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Mice , Animals , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Medulloblastoma/pathology , Eukaryotic Initiation Factor-4E/genetics , Disease Models, Animal , Cerebellar Neoplasms/pathology
7.
Sci Adv ; 8(51): eadd3942, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36563140

ABSTRACT

Translation control is essential in balancing hematopoietic precursors and differentiation; however, the mechanisms underlying this program are poorly understood. We found that the activity of the major cap-binding protein eIF4E is unexpectedly regulated in a dynamic manner throughout erythropoiesis that is uncoupled from global protein synthesis rates. Moreover, eIF4E activity directs erythroid maturation, and increased eIF4E expression maintains cells in an early erythroid state associated with a translation program driving the expression of PTPN6 and Igf2bp1. A cytosine-enriched motif in the 5' untranslated region is important for eIF4E-mediated translation specificity. Therefore, selective translation of key target genes necessary for the maintenance of early erythroid states by eIF4E highlights a unique mechanism used by hematopoietic precursors to rapidly elicit erythropoietic maturation upon need.

8.
Nat Chem ; 14(12): 1443-1450, 2022 12.
Article in English | MEDLINE | ID: mdl-36123449

ABSTRACT

Ternatin-family cyclic peptides inhibit protein synthesis by targeting the eukaryotic elongation factor-1α. A potentially related cytotoxic natural product ('A3') was isolated from Aspergillus, but only 4 of its 11 stereocentres could be assigned. Here, we synthesized SR-A3 and SS-A3-two out of 128 possible A3 epimers-and discovered that synthetic SR-A3 is indistinguishable from naturally derived A3. Relative to SS-A3, SR-A3 exhibits an enhanced residence time and rebinding kinetics, as revealed by single-molecule fluorescence imaging of elongation reactions catalysed by eukaryotic elongation factor-1α in vitro. An increased residence time-stereospecifically conferred by the unique ß-hydroxyl in SR-A3-was also observed in cells. Consistent with its prolonged duration of action, thrice-weekly dosing with SR-A3 led to a reduced tumour burden and increased survival in an aggressive Myc-driven mouse lymphoma model. Our results demonstrate the potential of SR-A3 as a cancer therapeutic and exemplify an evolutionary mechanism for enhancing cyclic peptide binding kinetics via stereospecific side-chain hydroxylation.


Subject(s)
Antineoplastic Agents , Single Molecule Imaging , Animals , Mice , Kinetics , Antineoplastic Agents/pharmacology , Peptides, Cyclic/pharmacology
9.
Mol Cell ; 82(14): 2536-2538, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35868253

ABSTRACT

In this issue of Molecular Cell, Liu et al. (2022) report that 5'-tRFCys, a stress-induced transfer RNA-derived RNA fragment (tRF) derived from the 5' halves of cysteine tRNAs, regulates post-transcriptional gene expression, enabling the survival and lung metastasis formation of breast cancers.


Subject(s)
Breast Neoplasms , RNA-Binding Proteins , Breast Neoplasms/genetics , Female , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Nucleolin
10.
Mol Cell ; 82(12): 2179-2184, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35714581

ABSTRACT

The concept of specialized ribosomes has garnered equal amounts of interest and skepticism since it was first introduced. We ask researchers in the field to provide their perspective on the topic and weigh in on the evidence (or lack thereof) and what the future may bring.


Subject(s)
Protein Biosynthesis , Ribosomes , Ribosomes/genetics , Ribosomes/metabolism
11.
Mol Cell ; 82(13): 2401-2414.e9, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35597236

ABSTRACT

Activated CD8+ T lymphocytes differentiate into heterogeneous subsets. Using super-resolution imaging, we found that prior to the first division, dynein-dependent vesicular transport polarized active TORC1 toward the microtubule-organizing center (MTOC) at the proximal pole. This active TORC1 was physically associated with active eIF4F, required for the translation of c-myc mRNA. As a consequence, c-myc-translating polysomes polarized toward the cellular pole proximal to the immune synapse, resulting in localized c-myc translation. Upon division, the TORC1-eIF4A complex preferentially sorted to the proximal daughter cell, facilitating asymmetric c-Myc synthesis. Transient disruption of eIF4A activity at first division skewed long-term cell fate trajectories to memory-like function. Using a genetic barcoding approach, we found that first-division sister cells often displayed differences in transcriptional profiles that largely correlated with c-Myc and TORC1 target genes. Our findings provide mechanistic insights as to how distinct T cell fate trajectories can be established during the first division.


Subject(s)
CD8-Positive T-Lymphocytes , Eukaryotic Initiation Factor-4F , Cell Differentiation , Lymphocyte Activation , Mechanistic Target of Rapamycin Complex 1/genetics
12.
EMBO J ; 41(8): e109823, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35315941

ABSTRACT

Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.


Subject(s)
Neoplasms , Protein Biosynthesis , Carcinogenesis , Humans , Neoplasms/drug therapy , Neoplasms/genetics , RNA, Messenger/metabolism , Tumor Microenvironment
13.
Cell ; 184(20): 5215-5229.e17, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34559986

ABSTRACT

Estrogen receptor α (ERα) is a hormone receptor and key driver for over 70% of breast cancers that has been studied for decades as a transcription factor. Unexpectedly, we discover that ERα is a potent non-canonical RNA-binding protein. We show that ERα RNA binding function is uncoupled from its activity to bind DNA and critical for breast cancer progression. Employing genome-wide cross-linking immunoprecipitation (CLIP) sequencing and a functional CRISPRi screen, we find that ERα-associated mRNAs sustain cancer cell fitness and elicit cellular responses to stress. Mechanistically, ERα controls different steps of RNA metabolism. In particular, we demonstrate that ERα RNA binding mediates alternative splicing of XBP1 and translation of the eIF4G2 and MCL1 mRNAs, which facilitates survival upon stress conditions and sustains tamoxifen resistance of cancer cells. ERα is therefore a multifaceted RNA-binding protein, and this activity transforms our knowledge of post-transcriptional regulation underlying cancer development and drug response.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm , Estrogen Receptor alpha/metabolism , RNA-Binding Proteins/metabolism , Animals , Base Sequence , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/chemistry , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Genomics , Humans , Mice, Inbred NOD , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Oncogenes , Protein Binding/drug effects , Protein Domains , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Tamoxifen/pharmacology , X-Box Binding Protein 1/metabolism
14.
Cell Stem Cell ; 28(7): 1183-1185, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34214436

ABSTRACT

Protein synthesis regulation constitutes a key node in directing decisions between hematopoietic stemness and differentiation. In this issue of Cell Stem Cell, Lv et al. (2021) describe a mechanism by which HSCs fine-tune translation rates by controlling 60S and 40S ribosomal subunit joining through targeted degradation of ZNF622 in response to stress.


Subject(s)
Hematopoietic Stem Cells , Cell Differentiation
15.
iScience ; 24(7): 102748, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34278258

ABSTRACT

The cap-binding protein eukaryotic initiation factor 4E (eIF4E) promotes translation of mRNAs associated with proliferation and survival and is an attractive target for cancer therapeutics. Here, we used Eif4e germline and conditional knockout models to assess the impact of reduced Eif4e gene dosage on B-cell leukemogenesis compared to effects on normal pre-B and mature B-cell function. Using a BCR-ABL-driven pre-B-cell leukemia model, we find that loss of one allele of Eif4e impairs transformation and reduces fitness in competition assays in vitro and in vivo. In contrast, reduced Eif4e gene dosage had no significant effect on development of pre-B and mature B cells or on survival or proliferation of non-transformed B lineage cells. These results demonstrate that inhibition of eIF4E could be a new therapeutic tool for pre-B-cell leukemia while preserving development and function of normal B cells.

16.
Dev Cell ; 56(14): 2089-2102.e11, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34242585

ABSTRACT

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Extremities/embryology , Haploinsufficiency , Protein Biosynthesis , Protein Processing, Post-Translational , Ribosomal Proteins/physiology , Tumor Suppressor Protein p53/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Body Patterning , Cell Cycle Proteins/genetics , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Phenotype , Ribosomes/metabolism
17.
Cell Rep ; 35(13): 109321, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34192540

ABSTRACT

The major cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), an ancient protein required for translation of all eukaryotic genomes, is a surprising yet potent oncogenic driver. The genetic interactions that maintain the oncogenic activity of this key translation factor remain unknown. In this study, we carry out a genome-wide CRISPRi screen wherein we identify more than 600 genetic interactions that sustain eIF4E oncogenic activity. Our data show that eIF4E controls the translation of Tfeb, a key executer of the autophagy response. This autophagy survival response is triggered by mitochondrial proteotoxic stress, which allows cancer cell survival. Our screen also reveals a functional interaction between eIF4E and a single anti-apoptotic factor, Bcl-xL, in tumor growth. Furthermore, we show that eIF4E and the exon-junction complex (EJC), which is involved in many steps of RNA metabolism, interact to control the migratory properties of cancer cells. Overall, we uncover several cancer-specific vulnerabilities that provide further resolution of the cancer translatome.


Subject(s)
Genetic Testing , Neoplasms/genetics , Protein Biosynthesis , Signal Transduction , 5' Untranslated Regions/genetics , Animals , Apoptosis/genetics , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Exons/genetics , Genome, Human , Humans , Male , Metalloendopeptidases/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neoplasms/pathology , Peptide Hydrolases/metabolism , Protein Biosynthesis/genetics , Signal Transduction/genetics , Stress, Physiological , bcl-X Protein/metabolism
18.
Methods Mol Biol ; 2318: 255-266, 2021.
Article in English | MEDLINE | ID: mdl-34019295

ABSTRACT

A central component of Myc's role as a master coordinator of energy metabolism and biomass accumulation is its ability to increase the rate of protein synthesis, driving cell cycle progression, and proliferation. Importantly, Myc-induced alterations in both global and specific mRNA translation is a key determinant of Myc's oncogenic function. Herein, we provide five assays to enable researchers to measure global protein synthesis changes, to identify the translatome uniquely regulated by Myc and to investigate the mechanisms generating the tailored Myc translation network. Metabolic labeling of cells with 35S-containing methionine and cysteine in culture and O-propargyl-puromycin (OP-Puro) incorporation in vivo are presented as methods to measure the overall rate of global protein synthesis. Isolation of polysome-associated mRNAs followed by quantitative real-time PCR (qRT-PCR) and the toeprint assay enable the detection of altered translation of specific mRNAs and isoforms, and visualization of differential ribosomal engagement at start codons uniquely mediated by Myc activation, respectively. Finally, the translation initiation reporter assay is utilized to uncover the molecular mechanism mediating altered translation initiation of a specific mRNA. Together, the protocols detailed in this chapter can be used to illuminate how and to what degree Myc-dependent regulation of translation influences homeostatic cellular functions as well as tumorigenesis.


Subject(s)
Metabolomics/methods , Protein Biosynthesis/physiology , Proto-Oncogene Proteins c-myc/metabolism , Cell Transformation, Neoplastic/metabolism , DNA/genetics , Gene Expression Regulation, Neoplastic/genetics , Genes, myc/genetics , Genes, myc/physiology , Homeostasis/genetics , Homeostasis/physiology , Humans , Neoplasms/genetics , Neoplasms/metabolism , Protein Biosynthesis/genetics , Proteins/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism
19.
Nat Metab ; 3(2): 244-257, 2021 02.
Article in English | MEDLINE | ID: mdl-33619378

ABSTRACT

Obesity is a global epidemic leading to increased mortality and susceptibility to comorbidities, with few viable therapeutic interventions. A hallmark of disease progression is the ectopic deposition of lipids in the form of lipid droplets in vital organs such as the liver. However, the mechanisms underlying the dynamic storage and processing of lipids in peripheral organs remain an outstanding question. Here, we show an unexpected function for the major cap-binding protein, eIF4E, in high-fat-diet-induced obesity. In response to lipid overload, select networks of proteins involved in fat deposition are altered in eIF4E-deficient mice. Specifically, distinct messenger RNAs involved in lipid metabolic processing and storage pathways are enhanced at the translation level by eIF4E. Failure to translationally upregulate these mRNAs results in increased fatty acid oxidation, which enhances energy expenditure. We further show that inhibition of eIF4E phosphorylation genetically-and by a potent clinical compound-restrains weight gain following intake of a high-fat diet. Together, our study uncovers translational control of lipid processing as a driver of high-fat-diet-induced weight gain and provides a pharmacological target to treat obesity.


Subject(s)
Adipogenesis/genetics , Diet, High-Fat , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Lipid Metabolism/genetics , Obesity/genetics , Adipocytes/pathology , Animals , Energy Metabolism , Fatty Acids/metabolism , Lipid Droplets , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/pathology , Oxidation-Reduction , Phosphorylation , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
20.
J Nucl Med ; 62(7): 949-955, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33246980

ABSTRACT

Although cancer has been known for decades to harbor an insatiable appetite for iron, only recently has the chemistry emerged to exploit this altered state therapeutically, by targeting the expanded cytosolic labile iron pool (LIP) of the cancer cell. The state of the art includes therapies that react with the LIP to produce cytotoxic radical species (in some cases also releasing drug payloads) and molecules that exacerbate LIP-induced oxidative stress to trigger ferroptosis. Effectively implementing LIP-targeted therapies in patients will require biomarkers to identify those tumors with the most elevated LIP and thus most likely to succumb to LIP-targeted interventions. Toward this goal, we tested whether tumor uptake of the novel LIP-sensing radiotracer 18F-TRX aligns with tumor sensitivity to LIP-targeted therapies. Methods:18F-TRX uptake was assessed in vivo among 10 subcutaneous and orthotopic human xenograft models. Glioma and renal cell carcinoma were prioritized because these tumors have the highest relative expression levels of STEAP3, the oxidoreductase that reduces ferric iron to the ferrous oxidation state, in the Broad Institute Cancer Cell Line Encyclopedia. The antitumor effects of the LIP-activated prodrug TRX-CBI, which releases the DNA alkylator CBI, were compared in mice bearing U251 or PC3 xenografts, tumors with high and intermediate levels of 18F-TRX uptake, respectively. Results:18F-TRX showed a wide range of tumor accumulation. An antitumor assessment study showed that the growth of U251 xenografts, the model with the highest 18F-TRX uptake, was potently inhibited by TRX-CBI. Moreover, the antitumor effects against U251 were significantly greater than those observed for PC3 tumors, consistent with the relative 18F-TRX-determined LIP levels in tumors before therapy. Lastly, a dosimetry study showed that the estimated effective human doses for adult male and female mice were comparable to those of other 18F-based imaging probes. Conclusion: We report the first evidence-to our knowledge-that tumor sensitivity to an LIP-targeted therapy can be predicted with a molecular imaging tool. More generally, these data bring a new dimension to the nuclear theranostic model by showing a requirement for imaging to quantify, in situ, the concentration of a metastable bioanalyte toward predicting tumor drug sensitivity.


Subject(s)
Radiopharmaceuticals , Animals , Cell Line, Tumor , Female , Male , Mice , Molecular Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...