Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 528
Filter
1.
Brain Res ; 1845: 149243, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293679

ABSTRACT

Kainic acid (KA)-induced excitotoxicity induces acute degradation of phospholipids and release of free fatty acids (FFAs) in rodent hippocampus, but the long-term changes in phospholipids or the subcellular origins of liberated FFAs remain unclarified. Phospholipids and FFAs were determined in KA-damaged mouse hippocampus by enzyme-coupled biochemical assays. The evolution of membrane injuries in the hippocampus was examined by a series of morphological techniques. The levels of phospholipids in the hippocampus decreased shortly after KA injection but recovered close to the control levels at 24 h. The decline in phospholipids was accelerated again from 72 to 120 after KA treatment. The levels of FFAs were negatively related to those of phospholipids, exhibiting a similar but opposite trend of changes. KA treatment caused progressively severe damage to vulnerable neurons, which was accompanied by increased permeability in the cell membrane and increased staining of membrane-bound dyes in the cytoplasm. Double fluorescence staining showed that the latter was partially overlapped with abnormally increased endocytic and autophagic components in damaged neurons. Our results revealed intricate and biphasic changes in phospholipid and FFA levels in KA-damaged hippocampus. Disrupted endomembrane system may be one of the major origins for KA-induced FFA release.

2.
J Mol Cell Biol ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313331

ABSTRACT

Ferroptosis is a non-apoptotic mode of cell death characterized by iron-dependent accumulation of lipid peroxidation. While lipid radical elimination reaction catalyzed by glutathione peroxidase 4 (GPX4) is a major anti-ferroptosis mechanism, inhibiting this pathway pharmaceutically shows promise as an anti-tumor strategy. However, certain tumor cells exhibit redundancy in lipid radical elimination pathways, rendering them unresponsive to GPX4 inhibitors. In this study, we conducted screens across different cancer cell lines and FDA-approved drugs, leading to the identification of temsirolimus in combination with the GPX4 inhibitor RSL3 as a potent inducer of ferroptosis in liver cancer cells. Mechanistically, temsirolimus sensitized liver cancer cells to ferroptosis by directly binding to and inhibiting ferroptosis suppressor protein 1 (FSP1) enzyme. Notably, while temsirolimus is recognized as a potent mTOR inhibitor, its ferroptosis-inducing effect is primarily attributed to its inhibition of FSP1 rather than mTOR activity. By performing in vitro colony formation assays and in vivo tumor xenograft models, we demonstrated that the combination of temsirolimus and RSL3 effectively suppressed liver tumor progression. This tumoricidal effect was associated with increased lipid peroxidation and induction of ferroptosis. In conclusion, our findings underscore the potential of combining multi-target ferroptosis-inducing agents to circumvent resistance to ferroptosis in liver cancer cells and highlight temsirolimus as a promising FSP1 inhibitor and ferroptosis inducer, which also deserves further investigation in translational medicine.

3.
Chemistry ; : e202402487, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177474

ABSTRACT

A base promoted oxidative [4+2] annulation of pyrrole-2-carbaldehyde derivatives with o-hydroxyphenyl propargylamines for the synthesis of highly substituted indolizines has been developed. Using DBN as base, a broad range of 5,6,7-trisubstituted indolizines have been prepared in good to excellent yields under mild conditions, and many useful functional groups can be tolerated.

4.
Int Dent J ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097439

ABSTRACT

OBJECTIVES: Clarifying the uncertain causal relationship between periodontitis and infective endocarditis using Mendelian randomization analysis, given their historically perceived association and clinical significance. METHODS: Genetic variation data for acute periodontitis, chronic periodontitis, aggressive periodontitis, and infective endocarditis were obtained from published GWAS in individuals of European ancestry. Instrumental variables significantly associated with periodontitis were selected and univariable Mendelian randomization was conducted to infer the causal association between periodontitis and infective endocarditis. Multivariable Mendelian randomization was also performed to adjust for potential confounders including smoking, drinking, diabetes, and education. RESULTS: Our analysis found no evidence of a causal association between periodontitis and infective endocarditis, with odds ratios (ORs) of 0.992 (95% CI: 0.879-1.120), 0.947 (95% CI: 0.738-1.214), and 1.056 (95% CI: 0.916-1.217) for acute periodontitis, chronic periodontitis, aggressive periodontitis, respectively. The robustness of our findings was confirmed by heterogeneity tests, pleiotropy tests, leave-one-out analyses, and MR-PRESSO. In the multivariable MR analysis, adjusting for smoking, drinking, diabetes, and education, the overall patterns between genetic liability to periodontitis and infective endocarditis remained consistent (all P > .05). CONCLUSION: Our findings indicate that there is no genetic causal association between periodontitis and infective endocarditis.

5.
Kaohsiung J Med Sci ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162596

ABSTRACT

Recurrent spontaneous abortion (RSA) has a complex pathogenesis with an increasing prevalence and is one of the most intractable clinical challenges in the field of reproductive medicine. Quercetin (QCT) is an effective active ingredient extracted from Semen Cuscutae and Herba Taxilli used in traditional Chinese medicine for tonifyng the kidneys and promoting fetal restoration. Although QCT helps improve adverse pregnancy outcomes, the specific mechanism remains unclear. The trophoblast cell line HTR-8/SVneo cultured in vitro was treated with different concentrations of QCT, and the cell counting kit-8 assay, wound healing assay, transwell assay, and western blotting were used to evaluate the effects and mechanisms of QCT on the proliferation, migration, and invasion of HTR-8/SVneo cells, respectively. To assess the expression levels of miR-149-3p and AKT serine/threonine kinase 1 (AKT1), quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were performed. A dual-luciferase reporter assay was used to investigate the potential regulatory relationship between miR-149-3p and AKT1. Our results showed that QCT promoted the proliferation, migration, and invasion of trophoblast cells, promoted the expression of MMP2, MMP9, and vimentin, and downregulated the expression of E-cadherin. Mechanistically, QCT downregulated the expression of miR-149-3p and upregulated the expression of AKT1, and miR-149-3p directly targets AKT1, negatively regulating its expression. Overexpression of miR-149-3p and silencing of AKT1 counteracted the promotional effects of QCT on trophoblast proliferation, migration, and invasion. Taken together, QCT regulates the migration and invasion abilities of HTR-8/SVneo cells through the miR-149-3p/AKT1 axis, which may provide a promising therapeutic approach for RSA.

6.
Angew Chem Int Ed Engl ; 63(40): e202410827, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38965048

ABSTRACT

Due to the stability issue, It is difficult to prepare a silver nanocluster bearing functional sites, especially at a large scale. We report the synthesis and structure of a stable silver nanocluster bearing multiple surface aldehyde groups [Ag21(Ph2PO2)10(p-CHOPhC≡C)6]SbF6, which allows for postsynthesis modification such as surface functionalization through aldimine condensation to give homochiral clusters. Remarkably, the preparation of this cluster can be done in ~90 % high yield at gram scale, which facilitates further studies and potential applications. Through DFT calculations and geometric structure analysis, the high stability of this cluster is attributed to the geometric closure and electronic structure. This is the first time that an effective one-pot method has been developed to synthesize functional silver nanoclusters in high yield. The title cluster will be useful in the development of a variety of cluster-based materials.

7.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000560

ABSTRACT

Pinus is an important economic tree species, but pine wilt disease (PWD) seriously threatens the survival of pine trees. PWD caused by Bursaphelenchus xylophilus is a major quarantine disease worldwide that causes significant economic losses. However, more information about its molecular pathogenesis is needed, resulting in a lack of effective prevention and treatment measures. In recent years, effectors have become a hot topic in exploring the molecular pathogenic mechanism of pathogens. Here, we identified a specific effector, BxNMP1, from B. xylophilus. In situ hybridization experiments revealed that BxNMP1 was specifically expressed in dorsal gland cells and intestinal cells, and RT-qPCR experiments revealed that BxNMP1 was upregulated in the early stage of infection. The sequence of BxNMP1 was different in the avirulent strain, and when BxNMP1-silenced B. xylophilus was inoculated into P. thunbergii seedlings, the disease severity significantly decreased. We demonstrated that BxNMP1 interacted with the thaumatin-like protein PtTLP-L2 in P. thunbergii. Additionally, we found that the ß-1,3-glucanase PtGLU interacted with PtTLP-L2. Therefore, we hypothesized that BxNMP1 might indirectly interact with PtGLU through PtTLP-L2 as an intermediate mediator. Both targets can respond to infection, and PtTLP-L2 can enhance the resistance of pine trees. Moreover, we detected increased salicylic acid contents in P. thunbergii seedlings inoculated with B. xylophilus when BxNMP1 was silenced or when the PtTLP-L2 recombinant protein was added. In summary, we identified a key virulence effector of PWNs, BxNMP1. It positively regulates the pathogenicity of B. xylophilus and interacts directly with PtTLP-L2 and indirectly with PtGLU. It also inhibits the expression of two targets and the host salicylic acid pathway. This study provides theoretical guidance and a practical basis for controlling PWD and breeding for disease resistance.


Subject(s)
Pinus , Plant Diseases , Tylenchida , Pinus/parasitology , Animals , Plant Diseases/parasitology , Plant Diseases/genetics , Tylenchida/pathogenicity , Tylenchida/genetics , Virulence , Helminth Proteins/metabolism , Helminth Proteins/genetics , Host-Parasite Interactions/genetics
8.
ERJ Open Res ; 10(4)2024 Jul.
Article in English | MEDLINE | ID: mdl-38957167

ABSTRACT

Background: Few studies have compared the associations between long-term exposures to particulate matters (aerodynamic diameter ≤1, ≤2.5 and ≤10 µm: PM1, PM2.5 and PM10, respectively) and asthma and asthma-related respiratory symptoms. The objective of the present study was to compare the strength of the aforementioned associations in middle-aged and elderly adults. Methods: We calculated the mean 722-day personal exposure estimates of PM1, PM2.5 and PM10 at 1 km×1 km spatial resolution between 2013 and 2019 at individual levels from China High Air Pollutants (CHAP) datasets. Using logistic regression models, we presented the associations as odds ratios and 95% confidence intervals, for each interquartile range (IQR) increase in PM1/PM2.5/PM10 concentration. Asthma denoted a self-reported history of physician-diagnosed asthma or wheezing in the preceding 12 months. Results: We included 7371 participants in COPD surveillance from Guangdong, China. Each IQR increase in PM1, PM2.5 and PM10 was associated with a greater odds (OR (95% CI)) of asthma (PM1: 1.22 (1.02-1.45); PM2.5: 1.24 (1.04-1.48); PM10: 1.30 (1.07-1.57)), wheeze (PM1: 1.27 (1.11-1.44); PM2.5: 1.30 (1.14-1.48); PM10: 1.34 (1.17-1.55)), persistent cough (PM1: 1.33 (1.06-1.66); PM2.5: 1.36 (1.09-1.71); PM10: 1.31 (1.02-1.68)) and dyspnoea (PM1: 2.10 (1.84-2.41); PM2.5: 2.17 (1.90-2.48); PM10: 2.29 (1.96-2.66)). Sensitivity analysis results were robust after excluding individuals with a family history of allergy. Associations of PM1, PM2.5 and PM10 with asthma and asthma-related respiratory symptoms were slightly stronger in males. Conclusion: Long-term exposure to PM is associated with increased risks of asthma and asthma-related respiratory symptoms.

9.
J Fungi (Basel) ; 10(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39057384

ABSTRACT

Based on phylogenetic analysis, Candolleomyces (Psathyrellaceae, Agaricales) was established with Psathyrella candolleana as the type species. The basidiomes range from small to large and are typically terrestrial, lignicolous, and rarely fimicolous. We analysed the Candolleomyces species collected during five years in China, and based on morphological and molecular data (nrITS, nrLSU, and tef-1α), we propose seven new Candolleomyces species viz. C. brevisporus, C. gyirongicus, C. lignicola, C. luridus, C. shennongdingicus, C. shennongjianus, and C. sichuanicus. Full descriptions, colour photographs, illustrations, phylogenetic analyses results, and comparisons with related Candolleomyces species of the new taxa are provided. This study enriches the species diversity of Candolleomyces in China.

10.
Sci Rep ; 14(1): 13375, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862599

ABSTRACT

Ceracris kiangsu Tsai (C. kiangs) is a kind of forest pest, which can harm nearly 100 kinds of weeds and crops. In this study, based on 314 species distribution points of C. kiangsu which were obtained from Chinese herbaria, literatures and investigation, and data of three future climate scenarios presented by CMIP6, two niche models (Garp, Maxent) were used to predict the suitable area of C. kiangsu in China. The result shows that the main environmental factors affecting the distribution of C. kiangsu are precipitation of driest month (bio14) and min temperature of coldest month (bio6). No matter now and future, the potential distribution areas of C. kiangsu in China are mainly in the south of Qinling-Huaihe River. Under current scenarios, the areas of the total, highly, moderately and poorly suitable of C. kiangsu in China are 160.65 × 104 km2, 31.70 × 104 km2, 60.36 × 104 km2 and 68.59 × 104 km2 respectively. The southern Hubei, western Jiangxi and eastern Hunan are highly-suitable areas. Under SSP1-2.6 and SSP2-4.5 scenarios, both the total suitable area and the highly suitable show a decreasing tread in 2050s. Compared to the 2050s, the total suitable area will coninue to decease in 2090s under SSP1-2.6, while it will increase under SSP2-4.5. The highly suitable area will increase in both scenarios, and the increased percentage under SSP2-4.5 is greater than that under SSP1-2.6. Under SSP5-8.5 scenarios, the total suitable area will increase by 1.83% in the 2050s, and decrease by 1.17% in the 2090s. The highly suitable area in the 2050s and 2090s under this scenarios is larger than under current scenarios. No matter what the scenario, the southern part of Yunnan, the southeast of Sichuan and the southwest of Chongqing will become highly-suitable areas as the climate continues to warm and should be monitored more cosely.

11.
Front Pharmacol ; 15: 1377055, 2024.
Article in English | MEDLINE | ID: mdl-38828450

ABSTRACT

Primary Sjögren's Syndrome (pSS) is a complex autoimmune disorder characterized by exocrine gland dysfunction, leading to dry eyes and mouth. Despite growing interest in biologic therapies for pSS, FDA approval has proven challenging due to trial complications. This review addresses the absence of a molecular-target-based approach to biologic therapy development and highlights novel research on drug targets and clinical trials. A literature search identified potential pSS treatment targets and recent advances in molecular understanding. Overlooking extraglandular symptoms like fatigue and depression is a notable gap in trials. Emerging biologic agents targeting cytokines, signal pathways, and immune responses have proven efficacy. These novel therapies could complement existing methods for symptom alleviation. Improved grading systems accounting for extraglandular symptoms are needed. The future of pSS treatment may involve gene, stem-cell, and tissue-engineering therapies. This narrative review offers insights into advancing pSS management through innovative biologic interventions.

12.
Small ; : e2404231, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943438

ABSTRACT

Conductive flexible hydrogels have attracted immense attentions recently due to their wide applications in wearable sensors. However, the poor mechanical properties of most conductive polymer limit their utilizations. Herein, a double network hydrogel is fabricated via a self-sorting process with cationic polyacrylamide as the first flexible network and the lantern[33]arene-based hydrogen organic framework nanofibers as the second rigid network. This hydrogel is endowed with good conductivity (0.25 S m-1) and mechanical properties, such as large Young's modulus (31.9 MPa), fracture elongation (487%) and toughness (6.97 MJ m-3). The stretchability of this hydrogel is greatly improved after the kirigami cutting, which makes it can be used as flexible strain sensor for monitoring human motions, such as bending of fingers, wrist and elbows. This study not only provides a valuable strategy for the construction of double network hydrogels by lanternarene, but also expands the application of the macrocycle hydrogels to flexible electronics.

13.
Plant Cell Environ ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808618

ABSTRACT

Bursaphelenchus xylophilus is the pathogen of pine wilt disease, which can devastate the pine forest ecosystem. Usually, plant cells generate reactive oxygen species (ROS) as a defensive substance or signalling molecules to resist the infection of nematodes. However, little is known about how B. xylophilus effectors mediate the plant ROS metabolism. Here, we identified a pioneer B. xylophilus Prx3-interacting effector 1 (BxPIE1) expressed in the dorsal gland cells and the intestine. Silencing of the BxPIE1 gene resulted in reduced nematode reproduction and a delay in disease progression during parasitic stages, with the upregulation of pathogenesis-related (PR) genes PtPR-3 (class Ⅳ chitinase) and PtPR-9 (peroxidase). The protein-protein interaction assays further demonstrated that BxPIE1 interacts with a Pinus thunbergii class III peroxidase (PtPrx3), which produces H2O2 under biotic stress. The expression of BxPIE1 and PtPrx3 was upregulated during the infection stage. Furthermore, BxPIE1 effectively inhibited H2O2 generating from class III peroxidase and ascorbate can recover the virulence of siBxPIE1-treated B. xylophilus by scavenging H2O2. Taken together, BxPIE1 is an important virulence factor, revealing a novel mechanism utilized by nematodes to suppress plant immunity.

14.
Mycology ; 15(2): 210-237, 2024.
Article in English | MEDLINE | ID: mdl-38813475

ABSTRACT

Russula is the largest genus in the Russulales and is widespread throughout the world. Almost all Russula species are known to be ectomycorrhizal with high ecological and edible values, and some are lethal poisonous. In this study, four new species belonging to the subgenus Russula crown clade are identified based on morphological and phylogenetic evidence from the Xizang Autonomous Region and other provinces of China. Morphologically, Russula paragraveolens (sect. Polychromae, subsect. Xerampelinae) is mainly characterised by a cherry red to blood red pileus centre, a reddish orange pileus margin; R. pseudograveolens (sect. Polychromae, subsect. Xerampelinae) is characterised by a violet brown to brownish red pileus centre, a pale red to pastel red pileus margin and short basidia; R. shigatseensis (sect. Flavisiccantes, subsect. Lepidinae) is characterised by a brownish orange to madder red pileus centre, pinkish red pileus margin, and having lateral branches or branches of hyphal terminations in pileipellis; R. yadongensis (sect. Tenellae, subsect. Laricinae) is characterised by a dark purplish red pileus centre with brownish purple tints and having isolated to clustered spines of spore ornamentations. Their distinct taxonomic status is confirmed by the positions of the four new species in both the ITS and 4-locus (nucLSU, mtSSU, rpb2, tef1) phylogenetic trees.

16.
World J Gastroenterol ; 30(18): 2454-2466, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764769

ABSTRACT

BACKGROUND: Drug-induced liver injury (DILI) is one of the most common adverse events of medication use, and its incidence is increasing. However, early detection of DILI is a crucial challenge due to a lack of biomarkers and noninvasive tests. AIM: To identify salivary metabolic biomarkers of DILI for the future development of noninvasive diagnostic tools. METHODS: Saliva samples from 31 DILI patients and 35 healthy controls (HCs) were subjected to untargeted metabolomics using ultrahigh-pressure liquid chromatography coupled with tandem mass spectrometry. Subsequent analyses, including partial least squares-discriminant analysis modeling, t tests and weighted metabolite coexpression network analysis (WMCNA), were conducted to identify key differentially expressed metabolites (DEMs) and metabolite sets. Furthermore, we utilized least absolute shrinkage and selection operato and random fores analyses for biomarker prediction. The use of each metabolite and metabolite set to detect DILI was evaluated with area under the receiver operating characteristic curves. RESULTS: We found 247 differentially expressed salivary metabolites between the DILI group and the HC group. Using WMCNA, we identified a set of 8 DEMs closely related to liver injury for further prediction testing. Interestingly, the distinct separation of DILI patients and HCs was achieved with five metabolites, namely, 12-hydroxydodecanoic acid, 3-hydroxydecanoic acid, tetradecanedioic acid, hypoxanthine, and inosine (area under the curve: 0.733-1). CONCLUSION: Salivary metabolomics revealed previously unreported metabolic alterations and diagnostic biomarkers in the saliva of DILI patients. Our study may provide a potentially feasible and noninvasive diagnostic method for DILI, but further validation is needed.


Subject(s)
Biomarkers , Chemical and Drug Induced Liver Injury , Metabolomics , Saliva , Humans , Biomarkers/analysis , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Saliva/chemistry , Saliva/metabolism , Male , Female , Metabolomics/methods , Middle Aged , Adult , Case-Control Studies , Tandem Mass Spectrometry/methods , ROC Curve , Aged , Chromatography, High Pressure Liquid , Early Diagnosis
17.
World J Gastrointest Oncol ; 16(5): 1808-1820, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764811

ABSTRACT

BACKGROUND: Vessels encapsulating tumor clusters (VETC) represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma (HCC). However, it seems that no one have focused on predicting VETC status in small HCC (sHCC). This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC (≤ 3 cm) patients. AIM: To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients. METHODS: A total of 309 patients with sHCC, who underwent segmental resection and had their VETC status confirmed, were included in the study. These patients were recruited from three different hospitals: Hospital 1 contributed 177 patients for the training set, Hospital 2 provided 78 patients for the test set, and Hospital 3 provided 54 patients for the validation set. Independent predictors of VETC were identified through univariate and multivariate logistic analyses. These independent predictors were then used to construct a VETC prediction model for sHCC. The model's performance was evaluated using the area under the curve (AUC), calibration curve, and clinical decision curve. Additionally, Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence, just as it is with the actual VETC status and early recurrence. RESULTS: Alpha-fetoprotein_lg10, carbohydrate antigen 199, irregular shape, non-smooth margin, and arterial peritumoral enhancement were identified as independent predictors of VETC. The model incorporating these predictors demonstrated strong predictive performance. The AUC was 0.811 for the training set, 0.800 for the test set, and 0.791 for the validation set. The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets. Furthermore, the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC. Finally, early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group, regardless of whether considering the actual or predicted VETC status. CONCLUSION: Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC (≤ 3 cm) patients, and it holds potential for predicting early recurrence. This model equips clinicians with valuable information to make informed clinical treatment decisions.

18.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692791

ABSTRACT

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Subject(s)
Anti-Bacterial Agents , Carbon , Copper , Neurotransmitter Agents , Carbon/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/urine , Anti-Bacterial Agents/blood , Neurotransmitter Agents/urine , Neurotransmitter Agents/analysis , Neurotransmitter Agents/blood , Porosity , Copper/chemistry , Humans , Nanospheres/chemistry , Colorimetry/methods , Ferric Compounds/chemistry , Biomimetic Materials/chemistry , Animals , Biosensing Techniques/methods , Chloramphenicol/analysis , Chloramphenicol/urine , Limit of Detection
19.
J Chem Neuroanat ; 138: 102420, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626816

ABSTRACT

Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.


Subject(s)
Protein Aggregation, Pathological , Humans , Animals , Protein Aggregation, Pathological/metabolism , Protein Aggregates/physiology , Nervous System Diseases/metabolism , Neurodegenerative Diseases/metabolism
20.
iScience ; 27(5): 109674, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38646169

ABSTRACT

Cancer-associated fibroblasts (CAFs) have been shown to play a key role in prostate cancer treatment resistance, but the role of CAFs in the initial course of enzalutamide therapy for prostate cancer remains unclear. Our research revealed that CAFs secrete CCL5, which promotes the upregulation of androgen receptor (AR) expression in prostate cancer cells, leading to resistance to enzalutamide therapy. Furthermore, CCL5 also enhances the expression of tumor programmed death-ligand 1 (PD-L1), resulting in immune escape. Mechanistically, CCL5 binds to the receptor CCR5 on prostate cancer cells and activates the AKT signaling pathway, leading to the upregulation of AR and PD-L1. The CCR5 antagonist maraviroc to inhibit the CAFs mediated CCL5 signaling pathway can effectively reduce the expression of AR and PD-L1, and improve the efficacy of enzalutamide. This study highlights a promising therapeutic approach targeting the CCL5-CCR5 signaling pathway to improve the effectiveness of enzalutamide.

SELECTION OF CITATIONS
SEARCH DETAIL