Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 350(6262): 790-5, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26494175

ABSTRACT

The ultrafast motion of electrons and holes after light-matter interaction is fundamental to a broad range of chemical and biophysical processes. We advanced high-harmonic spectroscopy to resolve spatially and temporally the migration of an electron hole immediately after ionization of iodoacetylene while simultaneously demonstrating extensive control over the process. A multidimensional approach, based on the measurement and accurate theoretical description of both even and odd harmonic orders, enabled us to reconstruct both quantum amplitudes and phases of the electronic states with a resolution of ~100 attoseconds. We separately reconstructed quasi-field-free and laser-controlled charge migration as a function of the spatial orientation of the molecule and determined the shape of the hole created by ionization. Our technique opens the prospect of laser control over electronic primary processes.

2.
Nat Commun ; 6: 7039, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25940229

ABSTRACT

All attosecond time-resolved measurements have so far relied on the use of intense near-infrared laser pulses. In particular, attosecond streaking, laser-induced electron diffraction and high-harmonic generation all make use of non-perturbative light-matter interactions. Remarkably, the effect of the strong laser field on the studied sample has often been neglected in previous studies. Here we use high-harmonic spectroscopy to measure laser-induced modifications of the electronic structure of molecules. We study high-harmonic spectra of spatially oriented CH3F and CH3Br as generic examples of polar polyatomic molecules. We accurately measure intensity ratios of even and odd-harmonic orders, and of the emission from aligned and unaligned molecules. We show that these robust observables reveal a substantial modification of the molecular electronic structure by the external laser field. Our insights offer new challenges and opportunities for a range of emerging strong-field attosecond spectroscopies.

3.
Phys Rev Lett ; 108(3): 033903, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22400743

ABSTRACT

We report a new all-optical approach to measuring the phase and amplitude of high-harmonic emission from aligned molecules. We combine the transient grating technique with a continuous rotation of the molecular alignment axis and develop an analytical model that enables the simultaneous determination of phases and amplitudes. Measurements in N(2) molecules are shown to be in qualitative agreement with the results of ab initio quantum scattering calculations.

4.
Phys Rev Lett ; 109(23): 233903, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368204

ABSTRACT

We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

SELECTION OF CITATIONS
SEARCH DETAIL
...