Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 26: e56614, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819879

ABSTRACT

BACKGROUND: Efficient data exchange and health care interoperability are impeded by medical records often being in nonstandardized or unstructured natural language format. Advanced language models, such as large language models (LLMs), may help overcome current challenges in information exchange. OBJECTIVE: This study aims to evaluate the capability of LLMs in transforming and transferring health care data to support interoperability. METHODS: Using data from the Medical Information Mart for Intensive Care III and UK Biobank, the study conducted 3 experiments. Experiment 1 assessed the accuracy of transforming structured laboratory results into unstructured format. Experiment 2 explored the conversion of diagnostic codes between the coding frameworks of the ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification), and Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) using a traditional mapping table and a text-based approach facilitated by the LLM ChatGPT. Experiment 3 focused on extracting targeted information from unstructured records that included comprehensive clinical information (discharge notes). RESULTS: The text-based approach showed a high conversion accuracy in transforming laboratory results (experiment 1) and an enhanced consistency in diagnostic code conversion, particularly for frequently used diagnostic names, compared with the traditional mapping approach (experiment 2). In experiment 3, the LLM showed a positive predictive value of 87.2% in extracting generic drug names. CONCLUSIONS: This study highlighted the potential role of LLMs in significantly improving health care data interoperability, demonstrated by their high accuracy and efficiency in data transformation and exchange. The LLMs hold vast potential for enhancing medical data exchange without complex standardization for medical terms and data structure.


Subject(s)
Health Information Exchange , Humans , Health Information Exchange/standards , Health Information Interoperability , Electronic Health Records , Natural Language Processing , Systematized Nomenclature of Medicine
2.
JMIR Med Inform ; 12: e51326, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421718

ABSTRACT

BACKGROUND: The early prediction of antibiotic resistance in patients with a urinary tract infection (UTI) is important to guide appropriate antibiotic therapy selection. OBJECTIVE: In this study, we aimed to predict antibiotic resistance in patients with a UTI. Additionally, we aimed to interpret the machine learning models we developed. METHODS: The electronic medical records of patients who were admitted to Yongin Severance Hospital, South Korea were used. A total of 71 features extracted from patients' admission, diagnosis, prescription, and microbiology records were used for classification. UTI pathogens were classified as either sensitive or resistant to cephalosporin, piperacillin-tazobactam (TZP), carbapenem, trimethoprim-sulfamethoxazole (TMP-SMX), and fluoroquinolone. To analyze how each variable contributed to the machine learning model's predictions of antibiotic resistance, we used the Shapley Additive Explanations method. Finally, a prototype machine learning-based clinical decision support system was proposed to provide clinicians the resistance probabilities for each antibiotic. RESULTS: The data set included 3535, 737, 708, 1582, and 1365 samples for cephalosporin, TZP, TMP-SMX, fluoroquinolone, and carbapenem resistance prediction models, respectively. The area under the receiver operating characteristic curve values of the random forest models were 0.777 (95% CI 0.775-0.779), 0.864 (95% CI 0.862-0.867), 0.877 (95% CI 0.874-0.880), 0.881 (95% CI 0.879-0.882), and 0.884 (95% CI 0.884-0.885) in the training set and 0.638 (95% CI 0.635-0.642), 0.630 (95% CI 0.626-0.634), 0.665 (95% CI 0.659-0.671), 0.670 (95% CI 0.666-0.673), and 0.721 (95% CI 0.718-0.724) in the test set for predicting resistance to cephalosporin, TZP, carbapenem, TMP-SMX, and fluoroquinolone, respectively. The number of previous visits, first culture after admission, chronic lower respiratory diseases, administration of drugs before infection, and exposure time to these drugs were found to be important variables for predicting antibiotic resistance. CONCLUSIONS: The study results demonstrated the potential of machine learning to predict antibiotic resistance in patients with a UTI. Machine learning can assist clinicians in making decisions regarding the selection of appropriate antibiotic therapy in patients with a UTI.

SELECTION OF CITATIONS
SEARCH DETAIL