Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Public Health ; 53(5): 1184-1191, 2024 May.
Article in English | MEDLINE | ID: mdl-38912134

ABSTRACT

Background: Plectinopathy-associated disorders are caused by mutations in the PLECTIN (PLEC) gene encoding Plectin protein. PLEC mutations cause a spectrum of diseases defined by varying degrees of signs, mostly with epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) and plectinopathy-related disorder is limb-girdle muscular dystrophy type 2Q (LGMD2Q). Here we report three cases with EBS-MD and LGMD2Q disorders analyzed by exome sequencing followed by mutation confirmation. Methods: A complete clinical examination was done by expert specialists and clinical geneticists in Next Generation Genetic polyclinic, Mashhad, Iran (NGC, years 2020_2021),. Genomic DNA was extracted and evaluated through whole-exome sequencing analysis followed by Sanger sequencing for co-segregation analysis of PLEC candidate variants. Results: We found three cases with the plectinopathy-related disease, two patients with limb-girdle muscular dystrophy type 2Q (LGMD2Q), and the other affected proband suffers from epidermolysis bullosa simplex combined with muscular dystrophy (EBS-MD) with variable zygosity mutations for PLEC. Motor development disorder and muscular dystrophy symptoms have different age onset in affected individuals. Patients with EBS demonstrated symptoms such as blistering, skin scars, neonatal-onset, and nail dystrophy. Conclusion: We report plectinopathy-associated disorders to expand clinical phenotypes in different types of PLEC-related diseases. We suppose to design more well-organized research based on comprehensive knowledge about the genetic basis of plectinopathy diseases.

2.
Brain ; 146(8): 3273-3288, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36757831

ABSTRACT

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Subject(s)
Dystonia , Dystonic Disorders , Nervous System Malformations , Male , Humans , Cross-Sectional Studies , Mutation/genetics , Phenotype , Dystonia/genetics , Dystonic Disorders/genetics , Molecular Chaperones/genetics
3.
Biotechnol Lett ; 41(6-7): 691-700, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30941601

ABSTRACT

OBJECTIVE: To knock-in an EGFP cassette into the γ-globin genes of K562 cells via CRISPR/Cas9, and to assess expression and hydroxyurea (HU)-mediated induction of the targeted EGFP transgene. RESULTS: The EGFP cassettes were specifically knocked into the Gγ gene. EGFP expression was detected in the targeted cell population and isolated clones. Furthermore, EGFP transcript and fluorescence levels were significantly induced following HU-treatment. CONCLUSION: This system is readily utilizable for genome scale studies of cis-acting regulatory elements which are implicated in γ-globin expression or HU-mediated induction.


Subject(s)
Cell Engineering/methods , Gene Expression Regulation/drug effects , Gene Knock-In Techniques/methods , Green Fluorescent Proteins/biosynthesis , Hydroxyurea/metabolism , Recombinant Proteins/biosynthesis , Transcriptional Activation , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , Green Fluorescent Proteins/genetics , Humans , K562 Cells , Recombinant Proteins/genetics , gamma-Globins/genetics
4.
Tissue Eng Part A ; 18(5-6): 609-20, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21981309

ABSTRACT

Due to pluripotency of embryonic stem (ES) cells, these cells are an invaluable in vitro model that investigates the influence of different physical and chemical cues on differentiation/development pathway of specialized cells. We sought the effect of roughness and alignment, as topomorpholocial properties of scaffolds on differentiation of green fluorescent protein-expressing ES (GFP-ES) cells into three germ layers derivates simultaneously. Furthermore, the effect of Matrigel as a natural extracellular matrix in combination with poly(lactic-co-glycolic acid) (PLGA) nanofibrous scaffolds on differentiation of mouse ES cells has been investigated. The PLGA nanofibrous scaffolds with different height and distribution of roughness and alignments were fabricated. Then, the different cell differentiation fats of GFP-ES cells plated on PLGA and PLGA/Matrigel scaffolds were analyzed by gene expression profiling. The findings demonstrated that distinct ranges of roughness, height, and distribution can support/promote a specific cell differentiation fate on scaffolds. Coating of scaffolds with Matrigel has a synergistic effect in differentiation of mesoderm-derived cells and germ cells from ES cells, whereas it inhibits the derivation of endodermal cell lineages. It was concluded that the topomorpholocial cues such as roughness and alignment should be considered in addition to other scaffolds properties to design an efficient electrospun scaffold for specific tissue engineering.


Subject(s)
Cell Differentiation , Collagen/chemistry , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Lactic Acid/chemistry , Laminin/chemistry , Nanofibers/chemistry , Polyglycolic Acid/chemistry , Proteoglycans/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Line , Cells, Immobilized/cytology , Cells, Immobilized/metabolism , Drug Combinations , Gene Expression Profiling , Gene Expression Regulation , Mice , Polylactic Acid-Polyglycolic Acid Copolymer , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL