Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Environ Pollut ; 342: 122862, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38040181

Thallium (Tl) is a highly toxic trace metal, included in the US EPA list of priority pollutants. Even though its toxicity is potentially higher or comparable to Cd or Hg, its environmental impact is largely unknown. Despite its toxicity, only a few recent studies are mapping the impact of recently introduced Tl on soil microbial communities, namely in agricultural systems but no studies focus on its long term effect. To complement the understanding of the impact of Tl on soil, this study aims to describe the influence of extremely high naturally occurring Tl concentration (50 mg/kg of potentially bioavailable Tl) on soil microbial communities. Our investigation concentrated on samples collected at Buus (Erzmatt, Swiss Jura, Switzerland), encompassing forest and meadow soil profiles of the local soil formed on hydrothermally mineralized dolomite rock, which is naturally rich in Tl. The soil profiles showed a significant proportion of potentially bioavailable Tl. Yet, even this high concentration of Tl has a limited impact on the richness of the soil bacterial community. Only the meadow soil samples show a reduced richness compared to control samples. Furthermore, our analysis of geogenic Tl contamination in the region unveiled a surprising finding: compared to other soils of Switzerland and in stark contrast to soils affected by recent mining activities, the structure of the bacterial community in Buus remained relatively unaffected. This observation highlights the unique ability of soil microbial communities to withstand extreme Tl contamination. Our study advances the understanding of Tl's environmental impact and underscores the resilience of soil microbes in the face of severe long-term contamination.


Mercury , Soil Pollutants , Trace Elements , Thallium/analysis , Soil/chemistry , Bacteria , Mercury/analysis , Trace Elements/analysis , Soil Pollutants/analysis , Environmental Monitoring , China
2.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article En | MEDLINE | ID: mdl-37935470

Soil environments are inhabited by microorganisms adapted to its diversified microhabitats. The metabolic activity of individual strains/populations reflects resources available at a particular spot, quality of which may not comply with broad soil characteristics. To explore the potential of individual strains to adapt to particular micro-niches of carbon sources, a set of 331 Actinomycetia strains were collected at ten sites differing in vegetation, soil pH, organic matter content and quality. The strains were isolated on the same complex medium with neutral pH and their metabolites analyzed by UHPLC and LC-MS/MS in spent cultivation medium (metabolic profiles). For all strains, their metabolic profiles correlated with soil pH and organic matter content of the original sites. In comparison, strains phylogeny based on either 16S rRNA or the beta-subunit of DNA-dependent RNA polymerase (rpoB) genes was partially correlated with soil organic matter content but not soil pH at the sites. Antimicrobial activities of strains against Kocuria rhizophila, Escherichia coli, and Saccharomyces cerevisiae were both site- and phylogeny-dependent. The precise adaptation of metabolic profiles to overall sites characteristics was further supported by the production of locally specific bioactive metabolites and suggested that carbon resources represent a significant selection pressure connected to specific antibiotic activities.


Actinobacteria , Soil/chemistry , Actinomyces , RNA, Ribosomal, 16S/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Phylogeny , Carbon/metabolism , Soil Microbiology
3.
Phytopathology ; 113(4): 741-752, 2023 Apr.
Article En | MEDLINE | ID: mdl-36510361

Disease-suppressive soils encompass specific plant-pathogen-microbial interactions and represent a rare example of an agroecosystem where soil conditions and microbiome together prevent the pathogen from causing disease. Such soils have the potential to serve as a model for characterizing soil pathogen-related aspects of soil health, but the mechanisms driving the establishment of suppressive soils vary and are often poorly characterized. Yet, they can serve as a resource for identifying markers for beneficial activities of soil microorganisms concerning pathogen prevention. Many recent studies have focused on the nature of disease-suppressive soils, but it has remained difficult to predict where and when they will occur. This review outlines current knowledge on the distribution of these soils, soil manipulations leading to pathogen suppression, and markers including bacterial and fungal diversity, enzymes, and secondary metabolites. The importance to consider soil legacy in research on the principles that define suppressive soils is also highlighted. The goal is to extend the context in which we understand, study, and use disease-suppressive soils by evaluating the relationships in which they occur and function. Finally, we suggest that disease-suppressive soils are critical not only for the development of indicators of soil health, but also for the exploration of general ecological principles about the surrounding landscape, effects of deeper layers of the soil profile, little studied soil organisms, and their interactions for future use in modern agriculture.


Soil Microbiology , Soil , Goals , Plant Diseases/prevention & control , Plant Diseases/microbiology , Agriculture
4.
Plants (Basel) ; 11(19)2022 Sep 30.
Article En | MEDLINE | ID: mdl-36235447

In Mediterranean ecosystems, the projected rainfall reduction of up to 30% may alter plant-soil interactions, particularly litter decomposition and Home Field Advantage (HFA). We set up a litter transplant experiment in the three main forests encountered in the northern part of the Medi-terranean Basin (dominated by either Quercus ilex, Quercus pubescens, or Pinus halepensis) equipped with a rain exclusion device, allowing an increase in drought either throughout the year or concentrated in spring and summer. Senescent leaves and needles were collected under two precipitation treatments (natural and amplified drought plots) at their "home" forest and were left to decompose in the forest of origin and in other forests under both drought conditions. MS-based metabolomic analysis of litter extracts combined with multivariate data analysis enabled us to detect modifications in the composition of litter specialized metabolites, following amplified drought treatment. Amplified drought altered litter quality and metabolomes, directly slowed down litter decomposition, and induced a loss of home field (dis)advantage. No indirect effect mediated by a change in litter quality on decomposition was observed. These results may suggest major alterations of plant-soil interactions in Mediterranean forests under amplified drought conditions.

5.
Microbiologyopen ; 11(2): e1276, 2022 02.
Article En | MEDLINE | ID: mdl-35478281

Actinobacteria are important cave inhabitants, but knowledge of how anthropization and anthropization-related visual marks affect this community on cave walls is lacking. We compared Actinobacteria communities among four French limestone caves (Mouflon, Reille, Rouffignac, and Lascaux) ranging from pristine to anthropized, and within Lascaux Cave between marked (wall visual marks) and unmarked areas in different rooms (Sas-1, Passage, Apse, and Diaclase). In addition to the 16S rRNA gene marker, 441 bp fragments of the hsp65 gene were used and an hsp65-related taxonomic database was constructed for the identification of Actinobacteria to the species level by Illumina-MiSeq analysis. The hsp65 marker revealed higher resolution for species and higher richness (99% operational taxonomic units cutoff) versus the 16S rRNA gene; however, more taxa were identified at higher taxonomic ranks. Actinobacteria communities varied between Mouflon and Reille caves (both pristine), and Rouffignac and Lascaux (both anthropized). Rouffignac displayed high diversity of Nocardia, suggesting human inputs, and Lascaux exhibited high Mycobacterium relative abundance, whereas Gaiellales were typical in pristine caves and the Diaclase (least affected area of Lascaux Cave). Within Lascaux, Pseudonocardiaceae dominated on unmarked walls and Streptomycetaceae (especially Streptomyces mirabilis) on marked walls, indicating a possible role in mark formation. A new taxonomic database  was developed. Although not all Actinobacteria species were represented, the use of the hsp65 marker enabled species-level variations of the Actinobacteria community to be documented based on the extent of anthropogenic pressure. This approach proved effective when comparing different limestone caves or specific conditions within one cave.


Actinobacteria , Caves , Actinobacteria/genetics , Bacteria , Calcium Carbonate , Caves/microbiology , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics
6.
Int J Syst Evol Microbiol ; 70(9): 5106-5114, 2020 Sep.
Article En | MEDLINE | ID: mdl-32804604

A novel actinobacterial strain, designated 15TR583T, was isolated from a waterlogged acidic soil collected near the town of Trebon, Czech Republic, and was subjected to a polyphasic taxonomic characterization. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences revealed that the organism forms an individual line of descent related to the order Streptosporangiales, class Actinomycetia. The strain shared highest 16S rRNA gene sequence similarity, yet of only 92.8%, with Actinocorallia aurea IFO 14752T. The strain grew in white colonies of aerobic, Gram-stain-positive, unbranching substrate mycelium bearing single spores at hyphae tips. The major fatty acids (>10%) were iso-C16 : 0, C16 : 0, iso-C17 : 1ω9 and 10-methyl-C17 : 0. The fatty acid pattern differed from all patterns currently described for actinobacterial genera. The organism contained as major menaquinones MK9(H6) and MK9(H8), which differentiated it from other actinobacterial families. Polar lipids were composed of six unidentified glycolipids, an unidentified phosphoglycolipid, two unidentified phospholipids and two unidentified aminolipids. Whole-cell sugars contained galactose, xylose and arabinose as major components. The peptidoglycan type was A1γ meso-diaminopimelic acid. The genomic DNA G+C content was 69.7 mol%. The distinct phylogenetic position and unusual combination of chemotaxonomic characteristics justify the proposal of Trebonia gen. nov., with the type species Trebonia kvetii sp. nov. (type strain 15TR583T=CCM 8942T=DSM 109105T), within Treboniaceae fam. nov.


Actinobacteria/classification , Phylogeny , Soil Microbiology , Actinobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , Czech Republic , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Glycolipids/chemistry , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
7.
Sci Rep ; 9(1): 14883, 2019 10 16.
Article En | MEDLINE | ID: mdl-31619759

Control of common scab disease can be reached by resistant cultivars or suppressive soils. Both mechanisms are likely to translate into particular potato microbiome profiles, but the relative importance of each is not known. Here, microbiomes of bulk and tuberosphere soil and of potato periderm were studied in one resistant and one susceptible cultivar grown in a conducive and a suppressive field. Disease severity was suppressed similarly by both means yet, the copy numbers of txtB gene (coding for a pathogenicity determinant) were similar in both soils but higher in periderms of the susceptible cultivar from conducive soil. Illumina sequencing of 16S rRNA genes for bacteria (completed by 16S rRNA microarray approach) and archaea, and of 18S rRNA genes for micro-eukarytes showed that in bacteria, the more important was the effect of cultivar and diversity decreased from resistant cultivar to bulk soil to susceptible cultivar. The major changes occurred in proportions of Actinobacteria, Chloroflexi, and Proteobacteria. In archaea and micro-eukaryotes, differences were primarily due to the suppressive and conducive soil. The effect of soil suppressiveness × cultivar resistance depended on the microbial community considered, but differed also with respect to soil and plant nutrient contents particularly in N, S and Fe.


Actinobacteria/growth & development , Archaea/growth & development , Disease Susceptibility/immunology , Plant Diseases/microbiology , Soil Microbiology , Solanum tuberosum/microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/pathogenicity , Archaea/classification , Archaea/genetics , Archaea/pathogenicity , Chloroflexi/classification , Chloroflexi/genetics , Chloroflexi/growth & development , Chloroflexi/pathogenicity , Crops, Agricultural , Disease Resistance/drug effects , Eukaryotic Cells/metabolism , Genotyping Techniques , Iron/metabolism , Iron/pharmacology , Microbiota/genetics , Nitrogen/metabolism , Nitrogen/pharmacology , Plant Diseases/immunology , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/growth & development , Proteobacteria/pathogenicity , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Solanum tuberosum/drug effects , Solanum tuberosum/immunology , Sulfur/metabolism , Sulfur/pharmacology , Virulence Factors/genetics , Virulence Factors/metabolism
8.
Front Microbiol ; 9: 2807, 2018.
Article En | MEDLINE | ID: mdl-30524406

Two long-term contaminated soils differing in contents of Pb, Zn, As, Cd were compared in a microcosm experiment for changes in microbial community structure and respiration after various treatments. We observed that the extent of long-term contamination (over 200 years) by toxic elements did not change the total numbers and diversity of bacteria but influenced their community composition. Namely, numbers of Actinobacteria determined by phylum specific qPCR increased and also the proportion of Actinobacteria and Chloroflexi increased in Illumina sequence libraries in the more contaminated soil. In the experiment, secondary disturbance by supplemented cadmium (doses from double to 100-fold the concentration in the original soil) and organic substrates (cellobiose or straw) increased bacterial diversity in the less contaminated soil and decreased it in the more contaminated soil. Respiration in the experiment was higher in the more contaminated soil in all treatments and correlated with bacterial numbers. Considering the most significant changes in bacterial community, it seemed that particularly Actinobacteria withstand contamination by toxic elements. The results proved higher resistance to secondary disturbance in terms of both, respiration and bacterial community structure in the less contaminated soil.

9.
Sci Total Environ ; 637-638: 1295-1310, 2018 Oct 01.
Article En | MEDLINE | ID: mdl-29801222

The bioassessment of aquatic ecosystems is currently based on various biotic indices that use the occurrence and/or abundance of selected taxonomic groups to define ecological status. These conventional indices have some limitations, often related to difficulties in morphological identification of bioindicator taxa. Recent development of DNA barcoding and metabarcoding could potentially alleviate some of these limitations, by using DNA sequences instead of morphology to identify organisms and to characterize a given ecosystem. In this paper, we review the structure of conventional biotic indices, and we present the results of pilot metabarcoding studies using environmental DNA to infer biotic indices. We discuss the main advantages and pitfalls of metabarcoding approaches to assess parameters such as richness, abundance, taxonomic composition and species ecological values, to be used for calculation of biotic indices. We present some future developments to fully exploit the potential of metabarcoding data and improve the accuracy and precision of their analysis. We also propose some recommendations for the future integration of DNA metabarcoding to routine biomonitoring programs.


Biodiversity , DNA Barcoding, Taxonomic , Environmental Monitoring/methods , Ecosystem
10.
FEMS Microbiol Ecol ; 93(1)2017 01.
Article En | MEDLINE | ID: mdl-27794015

The control of common scab (CS) of potatoes includes resistant cultivars, specific fertilization, increase of soil moisture and chemical treatments. Yet, these management practices do not have common or reproducible results at differing sites. In order to determine the effects of soil organic matter, iron and pH on CS development, peat and DTPA-chelated iron were supplemented to pots filled with soil conducive for CS. All results were compared with the same data obtained for a suppressive soil, which has naturally low severity of CS and occurs nearby. Bacteria, Actinobacteria and the txtB genes from the biosynthetic cluster of thaxtomin, which is responsible for the disease development, were quantified by qPCR in tuberosphere soil and potato periderm. Illumina amplicon sequencing of bacterial 16S rRNA genes was performed for tuberosphere soils. Both peat and iron supplements controlled potato scab, and the combination of the two supplements reduced CS most effectively. The bacterial community was modified by all treatments but the highest number of operational taxonomic units (OTUs) changed towards the suppressive soil after the combined peat and iron treatment. It seemed that iron supplement supported plant defense while both iron and peat additions changed the bacterial community in favor of CS suppression.


Bacteria/metabolism , Iron/analysis , Plant Diseases/microbiology , Soil/chemistry , Solanum tuberosum/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Iron/metabolism , Soil Microbiology , Solanum tuberosum/metabolism
11.
J Econ Entomol ; 109(4): 1887-96, 2016 08.
Article En | MEDLINE | ID: mdl-27122496

House dust mites (HDMs) and stored-product mites (SPMs) of various species inhabit human homes and stored agricultural products. These mites are carriers and hosts of microorganisms that enable their survival. The bacteriome from 13 species of SPMs and HDMs was analyzed and compared by 454 pyrosequencing of partial 16S rRNA gene amplicons. Altogether 128,052 sequences were obtained and assigned to 71 operational taxonomic units (OTUs) at the 97% identity level. The number of sequences in the OTUs between species of mites ranged from 6 to 31 in the individual mite species. We did not find any significant effect of diet or evolutionary origin of mites or their interaction on the composition of the mite bacteriome. In mite species with low bacterial diversity, the bacterial communities were dominated by potential symbiotic or parasitic bacteria, i.e., Cardinium in Dermatophagoides farinae (Hughes, 1961) and Aeroglyphus robustus (Banks 1906) and the enteric bacteria Erwinia in Blomia tropicalis Van Bronswijk, de Cock & Oshima, 1974 and Xenorhabdus in Tyroborus lini (Oudemans, 1924). Among the bacterial species identified, Staphylococcus, Bacillus, Kocuria, Brevibacterium, Corynebacterium, and Brachybacterium likely serve as food sources for the mites. The domestic acaridid mites carried high numbers of various bacteria that are potential threats to human health. These results contribute to the general understanding of the ecology of mite adaptation to human-made habitats.


Bacteria/isolation & purification , Microbiota , Mites/microbiology , Animals , Bacteria/classification , Bacteria/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
BMC Microbiol ; 15: 81, 2015 Apr 01.
Article En | MEDLINE | ID: mdl-25887892

BACKGROUND: Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. RESULTS: Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. CONCLUSIONS: The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite scaffolds occurring more likely in taxonomically distant producers but suggest that the antibiotic selection of gene pools is also influenced by site conditions.


ATP-Binding Cassette Transporters/genetics , Actinobacteria/classification , Actinobacteria/genetics , Drug Resistance, Bacterial , Methyltransferases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Actinobacteria/drug effects , Actinobacteria/isolation & purification , Anti-Bacterial Agents/biosynthesis , Cluster Analysis , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Sequence Analysis, DNA , Soil Microbiology
13.
PLoS One ; 10(3): e0118844, 2015.
Article En | MEDLINE | ID: mdl-25785687

Understanding how an invasive plant can colonize a large range of environments is still a great challenge in freshwater ecology. For the first time, we assessed the relative importance of four factors on the phosphorus uptake and growth of an invasive macrophyte Elodea nuttallii (Planch.) St. John. This study provided data on its phenotypic plasticity, which is frequently suggested as an important mechanism but remains poorly investigated. The phosphorus uptake of two Elodea nuttallii subpopulations was experimentally studied under contrasting environmental conditions. Plants were sampled in the Rhine floodplain and in the Northern Vosges mountains, and then maintained in aquaria in hard (Rhine) or soft (Vosges) water. Under these conditions, we tested the influence of two trophic states (eutrophic state, 100 µg x l(-1) P-PO4(3-) and hypertrophic state, 300 µg x l(-1) P-PO4(3-)) on the P metabolism of plant subpopulations collected at three seasons (winter, spring and summer). Elodea nuttallii was able to absorb high levels of phosphorus through its shoots and enhance its phosphorus uptake, continually, after an increase of the resource availability (hypertrophic > eutrophic). The lowest efficiency in nutrient use was observed in winter, whereas the highest was recorded in spring, what revealed thus a storage strategy which can be beneficial to new shoots. This experiment provided evidence that generally, the water trophic state is the main factor governing P uptake, and the mineral status (softwater > hardwater) of the stream water is the second main factor. The phenological stage appeared to be a confounding factor to P level in water. Nonetheless, phenology played a role in P turnover in the plant. Finally, phenotypic plasticity allows both subpopulations to adapt to a changing environment.


Hydrocharitaceae/metabolism , Introduced Species , Phosphorus/metabolism , Water Quality , Biological Transport , Calcium/analysis , Hydrocharitaceae/growth & development , Kinetics , Phenotype , Plant Shoots/growth & development , Plant Shoots/metabolism , Water/chemistry
14.
PLoS One ; 10(1): e0116291, 2015.
Article En | MEDLINE | ID: mdl-25612311

Common scab of potatoes is a disease, which is difficult to manage due to complex interactions of the pathogenic bacteria (Streptomyces spp.) with soil, microbial community and potato plants. In Bohemian-Moravian Highlands in the Czech Republic two sites (Vyklantice and Zdirec) were selected for a study of common scab disease suppressivity. At both sites, a field with low disease severity occurs next to one with high severity and the situation was regularly observed over four decades although all four fields undergo a crop rotation. In the four fields, quantities of bacteria, actinobacteria and the gene txtB from the biosynthetic gene cluster of thaxtomin, the main pathogenicity factor of common scab, were analyzed by real-time PCR. Microbial community structure was compared by terminal fragment length polymorphism analysis. Soil and potato periderm were characterized by contents of carbon, nitrogen, phosphorus, sulphur, calcium, magnesium, and iron. Quality of organic matter was assessed by high performance liquid chromatography of soil extracts. The study demonstrated that the suppressive character of the fields is locally specific. At Zdirec, the suppressivity was associated with low txtB gene copies in bulk soil, while at Vyklantice site it was associated with low txtB gene copies in the tuberosphere. The differences were discussed with respect to the effect of abiotic conditions at Zdirec and interaction between potato plant and soil microbial community at Vyklantice. Soil pH, Ca soil content or cation concentrations, although different were not in the range to predict the disease severity. Low severity of common scab was associated with low content of soil C, N, C/N, Ca and Fe suggesting that oligotrophic conditions may be favorable to common scab suppression.


Genes, Bacterial , Multigene Family , Plant Diseases/microbiology , Polymorphism, Restriction Fragment Length , Soil Microbiology , Solanum tuberosum/microbiology , Streptomyces/genetics , Streptomyces/pathogenicity , Indoles/metabolism , Piperazines/metabolism , Plant Tubers/microbiology , Streptomyces/metabolism
15.
Environ Microbiol Rep ; 6(4): 346-53, 2014 Aug.
Article En | MEDLINE | ID: mdl-24992533

Very few soil quality indicators include disease-suppressiveness criteria. We assessed whether 64 16S rRNA microarray probes whose signals correlated with tobacco black root rot suppressiveness in greenhouse analysis could also discriminate suppressive from conducive soils under field conditions. Rhizobacterial communities of tobacco and wheat sampled in 2 years from four farmers' fields of contrasted suppressiveness status were compared. The 64 previously identified indicator probes correctly classified 72% of 29 field samples, with nine probes for Azospirillum, Gluconacetobacter, Sphingomonadaceae, Planctomycetes, Mycoplasma, Lactobacillus crispatus and Thermodesulforhabdus providing the best prediction. The whole probe set (1033 probes) revealed strong effects of plant, field location and year on rhizobacterial community composition, and a smaller (7% variance) but significant effect of soil suppressiveness status. Seventeen additional probes correlating with suppressiveness status in the field (noticeably for Agrobacterium, Methylobacterium, Ochrobactrum) were selected, and combined with the nine others, they improved correct sample classification from 72% to 79% (100% tobacco and 63% wheat samples). Pseudomonas probes were not informative in the field, even those targeting biocontrol pseudomonads producing 2,4-diacetylphloroglucinol, nor was quantitative polymerase chain reaction for 2,4-diacetylphloroglucinol-synthesis gene phlD. This study shows that a subset of 16S rRNA probes targeting diverse rhizobacteria can be useful as suppressiveness indicators under field conditions.


Biota , Microarray Analysis/methods , Nicotiana/growth & development , Plant Diseases/prevention & control , Plant Roots/growth & development , Soil Microbiology , Humans , Oligonucleotide Array Sequence Analysis , RNA, Ribosomal, 16S/genetics
16.
PLoS One ; 7(10): e48429, 2012.
Article En | MEDLINE | ID: mdl-23119013

BACKGROUND: Tyrophagus putrescentiae (Acari: Astigmata) and Fusarium sp. co-occur in poorly managed grain. In a laboratory experiment, mite grazing resulted in significant reduction of fungal mycelium on cultivation plates. The destruction of mycelium appeared to be a result of an interaction between the mites, fungi and associated bacteria. METHODOLOGY AND PRINCIPAL FINDINGS: A laboratory experiment was performed to simulate a situation of grain multiinfested by mites and Fusarium fungi. Changes of mite-associated bacterial community in T. putrescentiae were described in 3 habitats: (i) T. putrescentiae mites from a rearing diet prior to their transfer to fungal diet; (ii) fungal mycelium before mite introduction; (iii) mites after 7 day diet of each Fusarium avenaceum, F. culmorum, F. poae and F. verticillioides. Bacterial communities were characterized by 16 S rRNA gene sequencing. In total, 157 nearly full-length 16 S rRNA gene sequences from 9 samples representing selected habitats were analyzed. In the mites, the shift from rearing to fungal diet caused changes in mite associated bacterial community. A diverse bacterial community was associated with mites feeding on F. avenaceum, while feeding on the other three Fusarium spp. led to selection of a community dominated by Bacillaceae. CONCLUSIONS/SIGNIFICANCE: The work demonstrated changes of bacterial community associated with T. putrescentiae after shift to fungal diets suggesting selection for Bacillaceae species known as chitinase producers, which might participate in the fungal mycelium hydrolysis.


Acaridae/microbiology , Bacteria/classification , Diet , Fusarium/growth & development , Animals , Culture Techniques , Edible Grain/microbiology , Mycelium/growth & development , Species Specificity
17.
Microb Ecol ; 63(4): 919-28, 2012 May.
Article En | MEDLINE | ID: mdl-22057398

Internal bacterial communities of synanthropic mites Acarus siro, Dermatophagoides farinae, Lepidoglyphus destructor, and Tyrophagus putrescentiae (Acari: Astigmata) were analyzed by culturing and culture-independent approaches from specimens obtained from laboratory colonies. Homogenates of surface-sterilized mites were used for cultivation on non-selective agar and DNA extraction. Isolated bacteria were identified by sequencing of the 16S rRNA gene. PCR amplified 16S rRNA genes were analyzed by terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning sequencing. Fluorescence in situ hybridization using universal bacterial probes was used for direct bacterial localization. T-RFLP analysis of 16S rRNA gene revealed distinct species-specific bacterial communities. The results were further confirmed by cloning and sequencing (284 clones). L. destructor and D. farinae showed more diverse communities then A. siro and T. putrescentiae. In the cultivated part of the community, the mean CFUs from four mite species ranged from 5.2 × 10(2) to 1.4 × 10(3) per mite. D. farinae had significantly higher CFUs than the other species. Bacteria were located in the digestive and reproductive tract, parenchymatical tissue, and in bacteriocytes. Among the clones, Bartonella-like bacteria occurring in A. siro and T. putresecentiae represented a distinct group related to Bartonellaceae and to Bartonella-like symbionts of ants. The clones of high similarity to Xenorhabdus cabanillasii were found in L. destructor and D. farinae, and one clone related to Photorhabdus temperata in A. siro. Members of Sphingobacteriales cloned from D. farinae and A. siro clustered with the sequences of "Candidatus Cardinium hertigii" and as a separate novel cluster.


Acari/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Acari/classification , Acari/genetics , Animals , Bacteria/classification , Cloning, Molecular , Dermatophagoides farinae/microbiology , In Situ Hybridization, Fluorescence , Mites/microbiology , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
18.
FEMS Microbiol Ecol ; 78(2): 386-94, 2011 Nov.
Article En | MEDLINE | ID: mdl-22092176

Members of the Actinobacteria are among the most important litter decomposers in soil. The site of a waterlogged deciduous forest with acidic soil was explored for actinobacteria because seasonality of litter inputs, temperature, and precipitation provided contrasting environmental conditions, particularly variation of organic matter quantity and quality. We hypothesized that these factors, which are known to influence decomposition, were also likely to affect actinobacterial community composition. The relationship between the actinobacterial community, soil moisture and organic matter content was assessed in two soil horizons in the summer and winter seasons using a 16S rRNA taxonomic microarray and cloning-sequencing of 16S rRNA genes. Both approaches showed that the community differed significantly between horizons and seasons, paralleling the changes in soil moisture and organic matter content. The microarray analysis further indicated that the actinobacterial community of the upper horizon was characterized by high incidence of the genus Mycobacterium. In both horizons and seasons, the actinobacterial clone libraries were dominated (by 80%) by sequences of a separate clade sharing an ancestral node with Streptosporangineae. This relatedness is supported also by some common adaptations, for example, to soil acidity and periodic oxygen deprivation or dryness.


Actinobacteria/classification , Soil Microbiology , Soil/chemistry , Trees/microbiology , Actinobacteria/genetics , Actinobacteria/growth & development , Base Sequence , Climate , Hydrogen-Ion Concentration , Molecular Sequence Data , Seasons
19.
Appl Environ Microbiol ; 77(21): 7560-7, 2011 Nov.
Article En | MEDLINE | ID: mdl-21926225

Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.


Bacteria/classification , Biodiversity , Fungi/classification , Plants/microbiology , Soil Microbiology , Soil/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Load , Carbon/analysis , Chromatography, High Pressure Liquid , Cluster Analysis , Colony Count, Microbial , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fungi/genetics , Fungi/isolation & purification , Hydrogen-Ion Concentration , Methyltransferases/genetics , Molecular Sequence Data , Nitrogen/analysis , Organic Chemicals/analysis , Phylogeny , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA
20.
FEMS Microbiol Ecol ; 78(1): 59-69, 2011 Oct.
Article En | MEDLINE | ID: mdl-21707674

Changes in the abundance of bacteria and fungi and in the composition of bacterial communities during primary succession were investigated in a brown coal mine deposit area near Sokolov, the Czech Republic, using phospholipid fatty acids analysis, microarray and 16S rRNA gene sequencing. The study considered a chronosequence of sites undergoing spontaneous succession: 6-, 12-, 21- and 45-year-old and a 21-year-old site revegetated with Alnus glutinosa. During succession, organic carbon and the total nitrogen content increased while the pH and the C/N ratio decreased. Microbial biomass and bacterial diversity increased until 21 years and decreased later; bacteria dominated over fungi in the initial and late phases of succession. Bacterial community composition of the 6-year-old site with no vegetation cover largely differed from the older sites, especially by a higher content of Gammaproteobacteria, Cyanobacteria and some Alphaproteobacteria. Bacteria belonging to the genera Acidithiobacillus, Thiobacillus and related taxa, the CO(2) and N(2) fixers, dominated the community at this site. In the later phases, bacterial community development seemed to reflect more the changes in soil nutrient content and pH than vegetation with a decrease of Actinobacteria and an increase of Acidobacteria. The site revegetated with A. glutinosa resembled the 45-year-old primary succession site and exhibited an even lower pH and C/N ratio, indicating that recultivation is able to accelerate soil development.


Bacteria/growth & development , Coal Mining , Coal , Soil Microbiology , Acidobacteria , Actinobacteria/genetics , Actinobacteria/growth & development , Alphaproteobacteria/genetics , Alphaproteobacteria/growth & development , Bacteria/classification , Bacteria/genetics , Base Sequence , Biodiversity , Biomass , Cyanobacteria/genetics , Cyanobacteria/growth & development , Czech Republic , DNA, Bacterial/analysis , Environmental Monitoring , Fungi/genetics , Fungi/growth & development , Genes, rRNA , Molecular Sequence Data , Nitrogen/analysis , Nitrogen/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil/chemistry
...