Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Article in English | MEDLINE | ID: mdl-38889935

ABSTRACT

The basidiomycetous yeast Pseudozyma tsukubaensis is known as an industrial mannosylerythritol lipid producer. In this study, the PtURA5 marker gene was deleted by homologous recombination. Using the PtURA5-deleted mutant as a host strain, we obtained a derivative disrupted for the PtKU70 gene, a putative ortholog of the KU70 gene encoding a protein involved in the non-homologous end-joining pathway of DNA repair. Subsequently, the introduced PtURA5 gene was re-deleted by marker recycling. These results demonstrated that the PtURA5 gene can be used as a recyclable marker gene. Although the frequency of homologous recombination has been shown to be increased by KU70 disruption in other fungi, the PtKU70-disrupted strain of P. tsukubaensis did not demonstrate an elevated frequency of homologous recombination. Furthermore, the PtKU70-disrupted strain did not show increased susceptibility to bleomycin. These results suggested that the function of this KU70 ortholog in P. tsukubaensis is distinct from that in other fungi.

2.
Front Cell Infect Microbiol ; 14: 1355679, 2024.
Article in English | MEDLINE | ID: mdl-38841110

ABSTRACT

Intestinal bacteria metabolize dietary substances to produce bioactive postbiotics, among which some are recognized for their role in promoting host health. We here explored the postbiotic potential of two omega-3 α-linolenic acid-derived metabolites: trans-10-cis-15-octadecadienoic acid (t10,c15-18:2) and cis-9-cis-15-octadecadienoic acid (c9,c15-18:2). Dietary intake of lipids rich in omega-3 α-linolenic acid elevated levels of t10,c15-18:2 and c9,c15-18:2 in the serum and feces of mice, an effect dependent on the presence of intestinal bacteria. Notably, t10,c15-18:2 mitigated skin inflammation in mice that became hypersensitive after exposure to 2,4-dinitrofluorobenzene, an experimental model for allergic contact dermatitis. In particular, t10,c15-18:2-but not c9,c15-18:2-attenuated ear swelling and edema, characteristic symptoms of contact hypersensitivity. The anti-inflammatory effects of t10,c15-18:2 were due to its ability to suppress the release of vascular endothelial growth factor A from keratinocytes, thereby mitigating the enhanced vascular permeability induced by hapten stimulation. Our study identified retinoid X receptor as a functional receptor that mediates the downregulation of skin inflammation upon treatment with t10,c15-18:2. Our results suggest that t10,c15-18:2 holds promise as an omega-3 fatty acid-derived postbiotic with potential therapeutic implications for alleviating the skin edema seen in allergic contact dermatitis-induced inflammation.


Subject(s)
Disease Models, Animal , Down-Regulation , Fatty Acids, Omega-3 , Vascular Endothelial Growth Factor A , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Dermatitis, Contact/metabolism , Dinitrofluorobenzene , Skin/metabolism , Skin/pathology , Keratinocytes/metabolism , Keratinocytes/drug effects , Female , Dermatitis, Allergic Contact/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Feces/chemistry , Feces/microbiology
3.
Foods ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540957

ABSTRACT

Bacteria generally release extracellular membrane vesicles (MVs), which are nanoparticles that play important roles in bacterial-bacterial and bacterial-host communication. As probiotics, lactic acid bacteria provide diverse health benefits to their hosts. In this study, we found that the Gram-positive lactic acid bacteria Lactiplantibacillus plantarum subsp. plantarum NBRC 15891 produce high amounts of MVs (LpMVs), and that LpMVs inhibit interleukin (IL)-8 production induced by lipopolysaccharide in intestinal epithelial HT29 cells. Heat- or UV-killed bacterial cells did not exhibit anti-inflammatory effects, and there was no uptake of these bacterial cells; contrarily, LpMVs were taken up into the cytoplasm of HT29 cells. Small RNAs extracted from LpMVs also suppressed IL-8 production in HT29 cells, suggesting that RNAs in the cytoplasm of bacterial cells are encapsulated in the MVs and released from the cells, which may be delivered to HT29 cells to exert their anti-inflammatory effects. In addition, administration of LpMVs to mice with dextran sodium sulfate-induced colitis alleviated colitis-induced weight loss and colon length shortening, indicating that LpMV intake is likely to be effective in preventing or ameliorating colitis.

4.
AMB Express ; 14(1): 20, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38337099

ABSTRACT

Sixteen strains of basidiomycetous yeasts were evaluated for their capability to produce ergothioneine (EGT), an amino acid derivative with strong antioxidant activity. The cells were cultured in either two synthetic media or yeast mold (YM) medium for 72 h, after which cytosolic constituents were extracted from the cells with hot water. After analyzing the extracts via liquid chromatography-mass spectrometry (LC-MS), we found that all strains produced varying amounts of EGT. The EGT-producing strains, including Ustilago siamensis, Anthracocystis floculossa, Tridiomyces crassus, Ustilago shanxiensis, and Moesziomyces antarcticus, were subjected to flask cultivation in YM medium. U. siamensis CBS9960 produced the highest amount of EGT at 49.5 ± 7.0 mg/L after 120 h, followed by T. crassus at 30.9 ± 1.8 mg/L. U. siamensis was also cultured in a jar fermenter and produced slightly higher amounts of EGT than under flask cultivation. The effects of culture conditions, particularly the addition of precursor amino acids, on EGT production by the selected strains were also evaluated. U. siamensis showed a 1.5-fold increase in EGT production with the addition of histidine, while U. shanxiensis experienced a 1.8-fold increase in EGT production with the addition of methionine. These results suggest that basidiomycetous yeasts could serve an abundant source for natural EGT producers.

5.
J Am Chem Soc ; 146(3): 2237-2247, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38196121

ABSTRACT

The acetal (O-glycoside) bonds of glycans and glycoconjugates are chemically and biologically vulnerable, and therefore C-glycosides are of interest as more stable analogs. We hypothesized that, if the O-glycoside linkage plays a vital role in glycan function, the biological activities of C-glycoside analogs would vary depending on their substituents. Based on this idea, we adopted a "linkage-editing strategy" for the creation of glycan analogs (pseudo-glycans). We designed three types of pseudo-glycans with CH2 and CHF linkages, which resemble the O-glycoside linkage in terms of bond lengths, angles, and bulkiness, and synthesized them efficiently by means of fluorovinyl C-glycosylation and selective hydrogenation reactions. Application of this strategy to isomaltose (IM), an inducer of amylase expression, and α-GalCer, which activates iNKT cells, resulted in the discovery of CH2-IM, which shows increased amylase production ability, and CHF-α-GalCer, which shows activity opposite that of native α-GalCer, serving as an antagonist of iNKT cells.


Subject(s)
Galactosylceramides , Glycosides , Polysaccharides , Glycosylation , Polysaccharides/chemistry , Amylases/metabolism
6.
Biosci Microbiota Food Health ; 43(1): 55-63, 2024.
Article in English | MEDLINE | ID: mdl-38188665

ABSTRACT

Nanosized membrane vesicles (MVs) released by bacteria play important roles in both bacteria-bacteria and bacteria-host interactions. Some gram-positive lactic acid bacteria produce MVs exhibiting immunoregulatory activity in the host. We found that both bacterial cells and MVs of Limosilactobacillus antri JCM 15950, isolated from the human stomach mucosa, enhance immunoglobulin A production by murine Peyer's patch cells. However, the thick cell walls of gram-positive bacteria resulted in low MV production, limiting experiments and applications using MVs. In this study, we evaluated the effects of glycine, which inhibits cell wall synthesis, on the immunostimulatory MV productivity of L. antri. Glycine inhibited bacterial growth while increasing MV production, with 20 g/L glycine increasing MV production approximately 12-fold. Glycine was most effective at increasing MV production when added in the early exponential phase, which indicated that cell division in the presence of glycine increased MV production. Finally, glycine increased MV productivity approximately 16-fold. Furthermore, glycine-induced MVs promoted interleukin-6 production by macrophage-like J774.1 cells, and the immunostimulatory activity was comparable to that of spontaneously produced MVs. Our results indicate that glycine is an effective agent for improving the production of MVs with immunostimulatory activity in gram-positive lactic acid bacteria, which can be applied as mucosal adjuvants and functional foods.

7.
Int Immunol ; 36(1): 33-43, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38006376

ABSTRACT

We previously demonstrated that Alcaligenes-derived lipid A (ALA), which is produced from an intestinal lymphoid tissue-resident commensal bacterium, is an effective adjuvant for inducing antigen-specific immune responses. To understand the immunologic characteristics of ALA as a vaccine adjuvant, we here compared the adjuvant activity of ALA with that of a licensed adjuvant (monophosphoryl lipid A, MPLA) in mice. Although the adjuvant activity of ALA was only slightly greater than that of MPLA for subcutaneous immunization, ALA induced significantly greater IgA antibody production than did MPLA during nasal immunization. Regarding the underlying mechanism, ALA increased and activated CD11b+ CD103- CD11c+ dendritic cells in the nasal tissue by stimulating chemokine responses. These findings revealed the superiority of ALA as a mucosal adjuvant due to the unique immunologic functions of ALA in nasal tissue.


Subject(s)
Alcaligenes , Lipid A , Animals , Mice , Lipid A/pharmacology , Adjuvants, Immunologic/pharmacology , Dendritic Cells
8.
Front Bioeng Biotechnol ; 11: 1243595, 2023.
Article in English | MEDLINE | ID: mdl-37920243

ABSTRACT

Mannosylerythritol lipids (MELs) are extracellular glycolipids produced by the basidiomycetous yeast strains. MELs consist of the disaccharide mannosylerythritol, which is acylated with fatty acids and acetylated at the mannose moiety. In the MEL biosynthesis pathway, an acyltransferase from Pseudozyma tsukubaensis, PtMAC2p, a known excellent MEL producer, has been identified to catalyze the acyl-transfer of fatty acid to the C3'-hydroxyl group of mono-acylated MEL; however, its structure remains unclear. Here, we performed X-ray crystallography of recombinant PtMAC2p produced in Escherichia coli and homogeneously purified it with catalytic activity in vitro. The crystal structure of PtMAC2p was determined by single-wavelength anomalous dispersion using iodide ions. The crystal structure shows that PtMAC2p possesses a large putative catalytic tunnel at the center of the molecule. The structural comparison demonstrated that PtMAC2p is homologous to BAHD acyltransferases, although its amino acid-sequence identity was low (<15%). Interestingly, the HXXXD motif, which is a conserved catalytic motif in the BAHD acyltransferase superfamily, is partially conserved as His158-Thr159-Leu160-Asn161-Gly162 in PtMAC2p, i.e., D in the HXXXD motif is replaced by G in PtMAC2p. Site-directed mutagenesis of His158 to Ala resulted in more than 1,000-fold decrease in the catalytic activity of PtMAC2p. These findings suggested that His158 in PtMAC2p is the catalytic residue. Moreover, in the putative catalytic tunnel, hydrophobic amino acid residues are concentrated near His158, suggesting that this region is a binding site for the fatty acid side chain of MEL (acyl acceptor) and/or acyl-coenzyme A (acyl donor). To our knowledge, this is the first study to provide structural insight into the catalytic activity of an enzyme involved in MEL biosynthesis.

9.
Front Immunol ; 14: 1111729, 2023.
Article in English | MEDLINE | ID: mdl-37180123

ABSTRACT

Macrophages manifest as various subtypes that play diverse and important roles in immunosurveillance and the maintenance of immunological homeostasis in various tissues. Many in vitro studies divide macrophages into two broad groups: M1 macrophages induced by lipopolysaccharide (LPS), and M2 macrophages induced by interleukin 4 (IL-4). However, considering the complex and diverse microenvironment in vivo, the concept of M1 and M2 is not enough to explain diversity of macrophages. In this study, we analyzed the functions of macrophages induced by simultaneous stimulation with LPS and IL-4 (termed LPS/IL-4-induced macrophages). LPS/IL-4-induced macrophages were a homogeneous population showing a mixture of the characteristics of M1 and M2 macrophages. In LPS/IL-4-induced macrophages, expression of cell-surface M1 markers (I-Ab) was higher than in M1 macrophages, but lower expression of iNOS, and expression of M1-associated genes (Tnfα and Il12p40) were decreased in comparison to expression in M1 macrophages. Conversely, expression of the cell-surface M2 marker CD206 was lower on LPS/IL-4-induced macrophages than on M2 macrophages and expression of M2-associated genes (Arg1, Chi3l3, and Fizz1) varied, with Arg1 being greater than, Fizz1 being lower than, and Chi3l3 being comparable to that in M2 macrophages. Glycolysis-dependent phagocytic activity of LPS/IL-4-induced macrophages was strongly enhanced as was that of M1 macrophages; however, the energy metabolism of LPS/IL-4-induced macrophages, such as activation state of glycolytic and oxidative phosphorylation, was quite different from that of M1 or M2 macrophages. These results indicate that the macrophages induced by LPS and IL-4 had unique properties.


Subject(s)
Interleukin-4 , Lipopolysaccharides , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Interleukin-4/metabolism , Macrophages/metabolism
10.
Front Mol Biosci ; 10: 1097955, 2023.
Article in English | MEDLINE | ID: mdl-36825199

ABSTRACT

Retinol is widely used in topical skincare products to ameliorate skin aging and treat acne and wrinkles; however, retinol and its derivatives occasionally have adverse side effects, including the induction of irritant contact dermatitis. Previously, we reported that mead acid (5,8,11-eicosatrienoic acid), an oleic acid metabolite, ameliorated skin inflammation in dinitrofluorobenzene-induced allergic contact hypersensitivity by inhibiting neutrophil infiltration and leukotriene B4 production by neutrophils. Here, we showed that mead acid also suppresses retinol-induced irritant contact dermatitis. In a murine model, we revealed that mead acid inhibited keratinocyte abnormalities such as keratinocyte hyperproliferation. Consistently, mead acid inhibited p38 MAPK (mitogen-activated protein kinase) phosphorylation, which is an essential signaling pathway in the keratinocyte hyperplasia induced by retinol. These inhibitory effects of mead acid were associated with the prevention of both keratinocyte hyperproliferation and the gene expression of neutrophil chemoattractants, including Cxcl1 and Cxcl2, and they were mediated by a PPAR (peroxisome proliferator-activated receptor)-α pathway. Our findings identified the anti-inflammatory effects of mead acid, the use of which can be expected to minimize the risk of adverse side effects associated with topical retinoid application.

11.
Sci Rep ; 13(1): 2386, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765090

ABSTRACT

Biodegradable plastics can solve the problem of unwanted plastics accumulating in the environment if they can be given the contradictory properties of durability in use and rapid degradation after use. Commercially available agricultural biodegradable mulch films are made from formulations containing polybutylene adipate-co-terephthalate (PBAT) to provide mechanical and UV resistance during the growing season. Although used films are ploughed into the soil using a tiller to promote decomposition, it is difficult if they remain durable. We showed that an enzyme produced by the leaf surface yeast Pseudozyma antarctica (PaE) degrades PBAT-containing films. In laboratory studies, PaE randomly cleaved the PBAT polymer chain and induced erosion of the film surface. In the field, commercial biodegradable films containing PBAT placed on ridges were weakened in both the warm and cold seasons by spraying the culture filtrate of P. antarctica. After the field was ploughed the next day, the size and total weight of residual film fragments decreased significantly (p < 0.05). Durable biodegradable plastics used in the field are degraded using PaE treatment and are broken down into small fragments by the plough. The resultant degradation products can then be more readily assimilated by many soil microorganisms.


Subject(s)
Biodegradable Plastics , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Polymers/metabolism , Soil , Agriculture
12.
J Oleo Sci ; 71(9): 1421-1426, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35965089

ABSTRACT

The basidiomycetous yeast Pseudozyma tsukubaensis produces a mannosylerythritol lipid (MEL) homologue, a diastereomer type of MEL-B, from olive oil. In a previous study, MEL-B production was increased by the overexpression of lipase PaLIPAp in P. tsukubaensis 1E5, through the enhancement of oil consumption. In the present study, RNA sequence analysis was used to identify a promoter able to induce high-level PaLIPA expression. The recombinant strain, expressing PaLIPA via the translation elongation factor 1 alpha/Tu promoter, showed higher lipase activity, rates of oil degradation, and MEL-B production than the strain which generated in our previous study.


Subject(s)
Ustilaginales , Basidiomycota , Glycolipids , Lipase/genetics , Lipase/metabolism , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Surface-Active Agents/metabolism , Ustilaginales/genetics
13.
Nat Commun ; 13(1): 4477, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982037

ABSTRACT

The gut microbiome is an important determinant in various diseases. Here we perform a cross-sectional study of Japanese adults and identify the Blautia genus, especially B. wexlerae, as a commensal bacterium that is inversely correlated with obesity and type 2 diabetes mellitus. Oral administration of B. wexlerae to mice induce metabolic changes and anti-inflammatory effects that decrease both high-fat diet-induced obesity and diabetes. The beneficial effects of B. wexlerae are correlated with unique amino-acid metabolism to produce S-adenosylmethionine, acetylcholine, and L-ornithine and carbohydrate metabolism resulting in the accumulation of amylopectin and production of succinate, lactate, and acetate, with simultaneous modification of the gut bacterial composition. These findings reveal unique regulatory pathways of host and microbial metabolism that may provide novel strategies in preventive and therapeutic approaches for metabolic disorders.


Subject(s)
Carbohydrate Metabolism , Clostridiales , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Obesity , Acetylcholine , Administration, Oral , Adult , Amylopectin , Animals , Clostridiales/metabolism , Cross-Sectional Studies , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/therapy , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Humans , Japan , Mice , Mice, Inbred C57BL , Obesity/microbiology , Obesity/therapy , Ornithine , Symbiosis
14.
Chemistry ; 28(55): e202201733, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35761481

ABSTRACT

Synthesis of three types of purpose-designed mannosylerythritol lipid (MEL)-D analogues with decanoyl groups, ß-GlcEL-D, α-GlcEL-D, and α-MEL-D, was accomplished utilizing our boron-mediated aglycon delivery (BMAD) methods. Their self-assembling properties, recovery effects on damaged skin cells, and antibacterial activity were evaluated. It was revealed, for the first time, that α-GlcEL-D and α-MEL-D only generated giant vesicles, indicating that slight differences in the steric configuration of an erythritol moiety and fatty acyl chains affect the ability to form vesicles. Analogue α-MEL-D exhibited significant recovery effects on damaged skin cells. Furthermore, α-MEL-D exhibited antibacterial activity as high as that for MEL-D, indicating that α-MEL-D is a promising artificial sugar-based material candidate for enhancing the barrier function of the stratum corneum, superior to a known cosmetic ingredient, and possesses antibacterial activity.


Subject(s)
Boron , Surface-Active Agents , Anti-Bacterial Agents/pharmacology , Erythritol , Glycolipids , Sugars , Surface-Active Agents/pharmacology
15.
J Oleo Sci ; 71(1): 119-125, 2022.
Article in English | MEDLINE | ID: mdl-35013034

ABSTRACT

Moesziomyces antarcticus is a basidiomycetous yeast that produces mannosylerythritol lipids (MELs), which have potential applications as bio-based functional materials in various oleochemical industries, the cosmetics, toiletry, agriculture, and pharmaceutical industries. To better understand the MEL producer, we characterized the central metabolic pathways of M. antarcticus strain T-34 grown on glucose or olive oil via metabolomics. The relative fatty acid content was higher in the cells cultured in olive oil compared to glucose, while the acetyl-CoA content was lower in cells cultured in olive oil. The levels of the tricarboxylic acid cycle metabolites citrate/isocitrate, α-ketoglutarate, and succinate were lower in olive oil compared to glucose, while fumarate and malate levels exhibited the opposite pattern. Pyruvate was not detected in olive oil compared to glucose culture. The levels of glycerol, as well as trehalose, myo-inositol, threitol/erythritol, and mannitol/sorbitol, were higher in olive oil compared to glucose cultures. The ATP level was lower in olive oil compared to glucose culture, although the assimilation of fatty acids produced by digestion of olive oil should promote large amounts of ATP production. The possibility that ATP regeneration by respiratory chain complex promote oil utilization and MEL production in M. antarcticus T-34 was found based on the results of this metabolomic analysis.


Subject(s)
Basidiomycota/metabolism , Glycolipids/biosynthesis , Metabolic Networks and Pathways/physiology , Metabolomics/methods , Acetyl Coenzyme A/metabolism , Adenosine Triphosphate/metabolism , Citric Acid Cycle , Culture Media , Culture Techniques , Fatty Acids/metabolism , Fumarates/metabolism , Glucose , Glycerol/metabolism , Malates/metabolism , Olive Oil
16.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Article in English | MEDLINE | ID: mdl-35013573

ABSTRACT

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Subject(s)
Diet, High-Fat , Macrophages , Adipose Tissue , Animals , Diet, High-Fat/adverse effects , Lipids , Macaca fascicularis/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism
17.
Chembiochem ; 23(2): e202100631, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34783433

ABSTRACT

Mannosylerythritol lipids (MELs), which are one of the representative sugar-based biosurfactants (BSs) produced by microorganisms, have attracted much attention in various fields in the sustainable development goals (SDGs) era. However, they are inseparable mixtures with respect to the chain length of the fatty acids. In this study, self-assembling properties and structure-activity relationship (SAR) studies of recovery effects on damaged skin cells using chemically synthesized MELs were investigated. It was revealed, for the first time, that synthetic and homogeneous MELs exhibited significant self-assembling properties to form droplets or giant vesicles. In addition, a small difference in the length of the fatty acid chains of the MELs significantly affected their recovery effects on the damaged skin cells. MELs with medium or longer length alkyl chains exhibited much higher recovery effects than that of C18-ceramide NP.


Subject(s)
Glycolipids/chemistry , Glycolipids/pharmacology , Skin/drug effects , Cells, Cultured , Humans , Skin/injuries , Structure-Activity Relationship
18.
Front Pharmacol ; 12: 763657, 2021.
Article in English | MEDLINE | ID: mdl-34744743

ABSTRACT

We previously identified Alcaligenes spp. as a commensal bacterium that resides in lymphoid tissues, including Peyer's patches. We found that Alcaligenes-derived lipopolysaccharide acted as a weak agonist of Toll-like receptor four due to the unique structure of lipid A, which lies in the core of lipopolysaccharide. This feature allowed the use of chemically synthesized Alcaligenes lipid A as a safe synthetic vaccine adjuvant that induces Th17 polarization to enhance systemic IgG and respiratory IgA responses to T-cell-dependent antigens (e.g., ovalbumin and pneumococcal surface protein A) without excessive inflammation. Here, we examined the adjuvant activity of Alcaligenes lipid A on a Haemophilus influenzae B conjugate vaccine that contains capsular polysaccharide polyribosyl ribitol phosphate (PRP), a T-cell-independent antigen, conjugated with the T-cell-dependent tetanus toxoid (TT) antigen (i.e., PRP-TT). When mice were subcutaneously immunized with PRP alone or mixed with TT, Alcaligenes lipid A did not affect PRP-specific IgG production. In contrast, PRP-specific serum IgG responses were enhanced when mice were immunized with PRP-TT, but these responses were impaired in similarly immunized T-cell-deficient nude mice. Furthermore, TT-specific-but not PRP-specific-T-cell activation occurred in mice immunized with PRP-TT together with Alcaligenes lipid A. In addition, coculture with Alcaligenes lipid A promoted significant proliferation of and enhanced antibody production by B cells. Together, these findings suggest that Alcaligenes lipid A exerts an adjuvant activity on thymus-independent Hib polysaccharide antigen in the presence of a T-cell-dependent conjugate carrier antigen.

19.
Appl Microbiol Biotechnol ; 105(18): 6679-6689, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34459953

ABSTRACT

A series of culture media for haloarchaea were evaluated to optimize the production of ultrahigh-molecular-weight (UHMW) poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Haloferax mediterranei. Cells of H. mediterranei grew (> 1 g/L of dry cell weight) and accumulated PHBV upon flask cultivation in 10 medium types with neutral pH and NaCl concentration > 100 g/L. Molecular weight and compositional analysis revealed that the number-average molecular weight (Mn) of PHBV produced with six selected types of media ranged from 0.8 to 3.5 × 106 g/mol and the 3-hydroxyvalerate (3HV) composition ranged from 8 to 36 mol%. Cultivation in two NBRC media, 1214 and 1380, resulted in the production of PHBV with an Mn of more than 3.0 × 106 g/mol and a weight-average molecular weight of more than 5.0 × 106 g/mol, indicating the production of UHMW-PHBV. These culture media contained small amount of complex nutrients like yeast extract and casamino acids, suggesting that H. mediterranei likely produced UHMW-PHBV on poor nutrient condition. Haloferax mediterranei grown in NBRC medium 1380 produced PHBV with the highest 3HV composition. A solvent-cast film of UHMW-PHBV with 26.4 mol% 3HV produced from 1-L flask cultivation with NBRC medium 1380 was found to be flexible and semi-transparent. Thermal analysis of the UHMW-PHBV cast film revealed melting and glass-transition temperatures of 90.5 °C and - 2.7 °C, respectively. KEY POINTS: • Haloarchaeal culture media were evaluated to produce UHMW-PHBV by H. mediterranei. • UHMW-PHBV with varied molecular weight was produced dependent on culture media. • Semi-transparent film could be made from UHMW-PHBV with 26.4 mol% 3HV.


Subject(s)
Haloferax mediterranei , Polyhydroxyalkanoates , Culture Media , Molecular Weight , Polyesters
20.
Yakugaku Zasshi ; 141(5): 681-688, 2021.
Article in Japanese | MEDLINE | ID: mdl-33952752

ABSTRACT

The intestine is exposed to a variety of exogenous materials that are harmful, harmless, or useful, such as pathogenic viruses and bacteria, intestinal bacteria, or food components. As such, the intestinal immune system is important for the regulation of immunological homeostasis and biological defense. Accumulating evidence indicates that gut environmental factors, such as dietary components and intestinal bacteria are critical for controlling intestinal immunity, and thereby, health and disease. Among the important dietary components are fatty acids, which are metabolized to lipid mediators that act as signaling molecules and regulate immune responses. In previous work, we identified lipid mediators derived from ω3 fatty acids, such as 17,18-epoxyeicosatetraenoic acid, 15-hydroxyeicosapentaenoic acid, and 14-hydroxydocosapentaenoic acid, which show potent anti-allergic and anti-inflammatory activities. In addition, we revealed that lipid mediators play key roles in the enhancement of intestinal Immunoglobulin A responses, which provide the first line of defense against viral and bacterial infectious diseases. Here, we review the anti-allergic, anti-inflammatory, and host-protective effects of lipid mediators mainly derived from dietary lipids.


Subject(s)
Fatty Acids/metabolism , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Animals , Anti-Allergic Agents , Anti-Inflammatory Agents , Eating/physiology , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/physiology , Humans , Immunoglobulin A/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology , Lipid Metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...