Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BJA Open ; 3: 100020, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37588587

ABSTRACT

Background: The effect of inverse inspiration:expiration (I:E) ratio on functional residual capacity (FRC) during pneumoperitoneum is unclear. We hypothesised that volume-targeted pressure-controlled inverse ratio ventilation (vtPC-IRV) would increase FRC by increasing the level of auto-PEEP in low respiratory compliance situations. Methods: During robot-assisted laparoscopic radical prostatectomy, 20 obese patients were sequentially ventilated with four different settings for 30 min in each setting: (1) control, I:E ratio of 1:2 and baseline airway pressure (BAP) of 5 cm H2O; (2) IRV2, I:E ratio of 2:1 and BAP off; (3) IRV3, I:E ratio of 3:1 and BAP off; and (4) IRV4, I:E ratio of 4:1 and BAP off. The changes in FRC were identified and compared among these settings. Results: The FRC significantly increased as the I:E ratio increased. The FRC values expressed as median (inter-quartile range) during control, IRV2, IRV3, and IRV4 were 1149 (898-1386), 1485 (1018-1717), 1602 (1209-1775), and 1757 (1337-1955) ml, respectively. Auto-PEEP increased significantly as the I:E ratio increased and correlated with FRC (rho=0.303; P=0.006). Shunt and physiological dead space were significantly lower in all IRV groups than in the control group; however, there were no significant differences among the IRV groups. Conclusions: vtPC-IRV with shortened expiratory time and increased auto-PEEP effectively increases FRC during robot-assisted laparoscopic radical prostatectomy in obese patients. FRC increases progressively as the I:E ratio increases from 1:2 to 4:1; however, an I:E ratio higher than 2:1 does not further improve the dead space. Clinical trial registration: UMIN000038989.

2.
PLoS One ; 16(10): e0258504, 2021.
Article in English | MEDLINE | ID: mdl-34644352

ABSTRACT

BACKGROUND: We previously reported that there were no differences between the lung-protective actions of pressure-controlled inverse ratio ventilation and volume control ventilation based on the changes in serum cytokine levels. Dead space represents a ventilation-perfusion mismatch, and can enable us to understand the heterogeneity and elapsed time changes in ventilation-perfusion mismatch. METHODS: This study was a secondary analysis of a randomized controlled trial of patients who underwent robot-assisted laparoscopic radical prostatectomy. The inspiratory to expiratory ratio was adjusted individually by observing the expiratory flow-time wave in the pressure-controlled inverse ratio ventilation group (n = 14) and was set to 1:2 in the volume-control ventilation group (n = 13). Using volumetric capnography, the physiological dead space was divided into three dead space components: airway, alveolar, and shunt dead space. The influence of pressure-controlled inverse ratio ventilation and time factor on the changes in each dead space component rate was analyzed using the Mann-Whitney U test and Wilcoxon's signed rank test. RESULTS: The physiological dead space and shunt dead space rate were decreased in the pressure-controlled inverse ratio ventilation group compared with those in the volume control ventilation group (p < 0.001 and p = 0.003, respectively), and both dead space rates increased with time in both groups. The airway dead space rate increased with time, but the difference between the groups was not significant. There were no significant changes in the alveolar dead space rate. CONCLUSIONS: Pressure-controlled inverse ratio ventilation reduced the physiological dead space rate, suggesting an improvement in the total ventilation/perfusion mismatch due to improved inflation of the alveoli affected by heterogeneous expansion disorder without hyperinflation of the normal alveoli. However, the shunt dead space rate increased with time, suggesting that atelectasis developed with time in both groups.


Subject(s)
Intermittent Positive-Pressure Ventilation/methods , Respiratory Dead Space , Aged , Capnography , Forced Expiratory Volume , Humans , Male , Middle Aged , Prostatectomy , Randomized Controlled Trials as Topic , Robotic Surgical Procedures , Tidal Volume
3.
Medicine (Baltimore) ; 100(9): e24906, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33655952

ABSTRACT

BACKGROUND: The aim of this meta-analysis with trial sequential analysis (TSA) was to evaluate the effect of a polyurethane (PU) tracheal tube cuff on the prevention of ventilator-associated pneumonia (VAP). METHODS: We performed a systematic search using the MEDLINE database through PubMed, Cochrane Central Register of Controlled Trial, SCOPUS, and Web of Science.Randomized controlled trials comparing the incidence of VAP and clinically relevant outcomes between PU cuff tubes and polyvinyl chloride (PVC) cuff tubes in adult patients. Two authors independently extracted study details, patient characteristics, and clinical outcomes such as incidence of VAP, bacterial colonization of tracheal aspirate, duration of mechanical ventilation, ICU stay, and ICU mortality. RESULTS: From 309 studies identified as potentially eligible, six studies with 1226 patients were included in this meta-analysis. All studies compared the incidence of VAP between PU cuffs and PVC cuffs. Use of a PU cuff was not associated with a reduction in VAP incidence (RR = 0.68; 95% CI, 0.45-1.03) with significant statistical heterogeneity (I2 = 65%). The quality of evidence was "very low." According to the TSA, the actual sample size was only 15.8% of the target sample size, and the cumulative Z score did not cross the trial sequential monitoring boundary for benefit. No positive impact was reported for the other relevant outcomes for PU cuffs. CONCLUSIONS: The use of a PU cuff for mechanical ventilation did not prevent VAP. Further trials with a low risk of bias need to be performed.


Subject(s)
Intubation, Intratracheal/instrumentation , Pneumonia, Ventilator-Associated/prevention & control , Polyurethanes , Polyvinyl Chloride , Respiration, Artificial/methods , Equipment Design , Humans , Intensive Care Units
4.
PLoS One ; 15(12): e0243971, 2020.
Article in English | MEDLINE | ID: mdl-33332454

ABSTRACT

BACKGROUND: Expiratory flow-initiated pressure-controlled inverse ratio ventilation (EF-initiated PC-IRV) reduces physiological dead space. We hypothesised that EF-initiated PC-IRV would be lung protective compared with volume-controlled ventilation (VCV). METHODS: Twenty-eight men undergoing robot-assisted laparoscopic radical prostatectomy were enrolled in this randomised controlled trial. The EF-initiated PC-IRV group (n = 14) used pressure-controlled ventilation with the volume guaranteed mode. The inspiratory to expiratory (I:E) ratio was individually adjusted by observing the expiratory flow-time wave. The VCV group (n = 14) used the volume control mode with a 1:2 I:E ratio. The Mann-Whitney U test was used to compare differences in the serum cytokine levels. RESULTS: There were no significant differences in serum IL-6 between the EF-initiated PC-IRV (median 34 pg ml-1 (IQR 20.5 to 63.5)) and VCV (31 pg ml-1 (24.5 to 59)) groups (P = 0.84). The physiological dead space rate (physiological dead space/expired tidal volume) was significantly reduced in the EF-initiated PC-IRV group as compared with that in the VCV group (0.31 ± 0.06 vs 0.4 ± 0.07; P<0.001). The physiological dead space rate was negatively correlated with the forced vital capacity (% predicted) in the VCV group (r = -0.85, P<0.001), but not in the EF-initiated PC-IRV group (r = 0.15, P = 0.62). Two patients in the VCV group had permissive hypercapnia with low forced vital capacity (% predicted). CONCLUSIONS: There were no differences in the lung-protective properties between the two ventilatory strategies. However, EF-initiated PC-IRV reduced physiological dead space rate; thus, it may be useful for reducing the ventilatory volume that is necessary to maintain normocapnia in patients with low forced vital capacity (% predicted) during robot-assisted laparoscopic radical prostatectomy.


Subject(s)
Exhalation/physiology , Lung/physiology , Positive-Pressure Respiration , Respiration, Artificial/methods , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Intermittent Positive-Pressure Ventilation , Male , Middle Aged , Pulmonary Gas Exchange/physiology , Tidal Volume/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL