Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 768: 144792, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736322

ABSTRACT

Studying the behaviour of nanomaterials after their release into natural water is essential to understand the risk associated to their environmental exposure. In particular, the interaction and adsorption of dissolved organic matter onto nanoparticles strongly influence the behaviour and fate of nanomaterials in natural water systems. We herein study the interaction of Au and Ag nanoparticles and humic acids, the principal component of natural dissolved organic matter. Physicochemical characterization results showed the formation of an organic matter corona, consisting of two layers: a "hard" one, firmly bound to the nanoparticle surface, and a "soft" one, in dynamic equilibrium and, consequently, highly dependent on the media organic matter concentration. The extent of the electro-steric stabilization of the so called environmental corona depends on the size of the supramolecular association of humic acid (which depends on its hydrophilic and lipophilic moieties), the nanoparticle size, the total concentration of organic matter in the media, and the ratio between them. Interestingly, environmental coronas can eventually prevent Ca2+ and Mg2+ induced aggregation at concentrations range present in most of the freshwater bodies. The humic coating formed on top of the Au or control Ag nanoparticles presented a similar profile, but the corrodibility of Ag led to a more natural detachment of the corona. These results were further confirmed by exposing the nanoparticles to a model of natural water and standard mud (LUFA 2.2 dispersion). In the latter case, after several days, nanoparticle sedimentation was observed, which was attributed to interactions with macro organic and inorganic matter (fraction larger than particulate matter).

2.
Biomimetics (Basel) ; 2(4)2017 Nov 13.
Article in English | MEDLINE | ID: mdl-31105183

ABSTRACT

The covalent functionalization of surfaces with molecules capable of providing new properties to the treated substrate, such as hydrophobicity or bioactivity, has been attracting a lot of interest in the last decades. For achieving this goal, the generation of a universally functionalizable primer coating in one-pot reaction and under relatively mild conditions is especially attractive due to its potential versatility and ease of application. The aim of the present work is to obtain such a functionalizable coating by a cross-linking reaction between pyrocatechol and hexamethylenediamine (HDMA) under oxidizing conditions. For demonstrating the efficacy of this approach, different substrates (glass, gold, silicon, and fabric) have been coated and later functionalized with two different alkylated species (1-hexadecanamine and stearoyl chloride). The success of their attachment has been demonstrated by evaluating the hydrophobicity conferred to the surface by contact angle measurements. Interestingly, these results, together with its chemical characterization by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR), have proven that the reactivity of the primer coating towards the functionalizing agent can be tuned in function of its generation time.

3.
ACS Appl Mater Interfaces ; 6(20): 17616-25, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25272371

ABSTRACT

A series of catechol derivatives with a different number of linear alkyl chain substituents, and different length, have been shown to polymerize in the presence of aqueous ammonia and air, yielding hydrophobic coatings that present the ability to provide robust and efficient water repellency on weaved textiles, including hydrophilic cotton. The polymerization strategy presented exemplifies an alternative route to established melanin- and polydopamine-like functional coatings, affording designs in which all catechol (adhesive) moieties support specific functional side chains for maximization of the desired (hydrophobic) functionality. The coatings obtained proved effective in the transformation of polyester and cotton weaves, as well as filter paper, into reusable water-repellent, oil-absorbent materials capable of retaining roughly double their weight in model compounds (n-tetradecane and olive oil), as well as of separating water/oil mixtures by simple filtration.


Subject(s)
Bivalvia/chemistry , Coated Materials, Biocompatible/chemistry , Hydrophobic and Hydrophilic Interactions , Oils/isolation & purification , Textiles , Water/chemistry , Absorption, Physicochemical , Animals , Catechols/chemical synthesis , Catechols/chemistry , Molecular Weight , Polymers/chemical synthesis , Polymers/chemistry , Solutions , Water Pollutants, Chemical/isolation & purification
4.
Adv Mater ; 25(14): 2066-70, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23418006

ABSTRACT

A facile one-step polymerization strategy is explored to achieve novel catechol-based materials. Depending on the functionality of the catechol, the as-prepared product can be used to modify at will the surface tension of nano and bulk structures, from oleo-/hydrophobic to highly hydrophilic. A hydrophobic catechol prepared thus polymerized shows the ability to self-assemble as solid nanoparticles with sticky properties in polar solvent media. Such a versatile concept is ideal for the development of catechol-based multifunctional materials.

5.
Adv Mater ; 25(5): 653-701, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23180685

ABSTRACT

Catechols are found in nature taking part in a remarkably broad scope of biochemical processes and functions. Though not exclusively, such versatility may be traced back to several properties uniquely found together in the o-dihydroxyaryl chemical function; namely, its ability to establish reversible equilibria at moderate redox potentials and pHs and to irreversibly cross-link through complex oxidation mechanisms; its excellent chelating properties, greatly exemplified by, but by no means exclusive, to the binding of Fe(3+); and the diverse modes of interaction of the vicinal hydroxyl groups with all kinds of surfaces of remarkably different chemical and physical nature. Thanks to this diversity, catechols can be found either as simple molecular systems, forming part of supramolacular structures, coordinated to different metal ions or as macromolecules mostly arising from polymerization mechanisms through covalent bonds. Such versatility has allowed catechols to participate in several natural processes and functions that range from the adhesive properties of marine organisms to the storage of some transition metal ions. As a result of such an astonishing range of functionalities, catechol-based systems have in recent years been subject to intense research, aimed at mimicking these natural systems in order to develop new functional materials and coatings. A comprehensive review of these studies is discussed in this paper.


Subject(s)
Biological Products/chemistry , Biomimetic Materials/chemistry , Catechols/chemistry
6.
Phys Chem Chem Phys ; 14(34): 11937-43, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22847275

ABSTRACT

This combined experimental (STM, XPS) and molecular dynamics simulation study highlights the complex and subtle interplay of solvent effects and surface interactions on the 2-D self-assembly pattern of a Schiff-base macrocycle containing catechol moieties at the liquid-solid interface. STM imaging reveals a hexagonal ordering of the macrocycles at the n-tetradecane/Au(111) interface, compatible with a desorption of the lateral chains of the macrocycle. Interestingly, all the triangular-shaped macrocycles are oriented in the same direction, avoiding a close-packed structure. XPS experiments indicate the presence of a strong macrocycle-surface interaction. Also, MD simulations reveal substantial solvent effects. In particular, we find that co-adsorption of solvent molecules with the macrocycles induces desorption of lateral chains, and the solvent molecules act as spacers stabilizing the open self-assembly pattern.

7.
Chemistry ; 18(10): 3056-63, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22290796

ABSTRACT

The large tendency of catechol rings to adsorb on surfaces has been studied by STM experiments with molecular resolution combined with molecular-dynamics simulations. The strong adhesion is due to interactions with the surface and solvent effects. Moreover, the thermodynamic control over the differential adsorption of 1 and the nonanoic solvent molecules has been used to induce a new temperature-induced switchable interconversion. Two different phases that differ in their crystal packing and the presence of solvent molecules coexist upon an increase or decrease in the temperature. These results open new insight into the behavior of catechol molecules on surfaces and 2D molecular suprastructures.


Subject(s)
Catechols/chemistry , Microscopy, Scanning Tunneling/methods , Catechols/chemical synthesis , Models, Chemical , Molecular Structure , Solvents/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL