Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 239(10): 3313-3323, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36094619

ABSTRACT

The pathophysiology of schizophrenia involves abnormal reward processing, thought to be due to disrupted striatal and dopaminergic function. Consistent with this hypothesis, functional magnetic resonance imaging (fMRI) studies using the monetary incentive delay (MID) task report hypoactivation in the striatum during reward anticipation in schizophrenia. Dopamine neuron activity is modulated by striatal GABAergic interneurons. GABAergic interneuron firing rates, in turn, are related to conductances in voltage-gated potassium 3.1 (Kv3.1) and 3.2 (Kv3.2) channels, suggesting that targeting Kv3.1/3.2 could augment striatal function during reward processing. Here, we studied the effect of a novel potassium Kv3.1/3.2 channel modulator, AUT00206, on striatal activation in patients with schizophrenia, using the MID task. Each participant completed the MID during fMRI scanning on two occasions: once at baseline, and again following either 4 weeks of AUT00206 or placebo treatment. We found a significant inverse relationship at baseline between symptom severity and reward anticipation-related neural activation in the right associative striatum (r = -0.461, p = 0.035). Following treatment with AUT00206, there was a significant increase in reward anticipation-related activation in the left associative striatum (t(13) = 4.23, peak-level p(FWE) < 0.05)), but no significant effect in the ventral striatum. This provides preliminary evidence that the Kv3.1/3.2 potassium channel modulator, AUT00206, may address reward-related striatal abnormalities in schizophrenia.


Subject(s)
Schizophrenia , Ventral Striatum , Humans , Magnetic Resonance Imaging , Reward , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Shaw Potassium Channels , Ventral Striatum/physiology
2.
J Psychopharmacol ; 36(9): 1061-1069, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36164687

ABSTRACT

BACKGROUND: Current treatments for schizophrenia act directly on dopamine (DA) receptors but are ineffective for many patients, highlighting the need to develop new treatment approaches. Striatal DA dysfunction, indexed using [18F]-FDOPA imaging, is linked to the pathoetiology of schizophrenia. We evaluated the effect of a novel drug, AUT00206, a Kv3.1/3.2 potassium channel modulator, on dopaminergic function in schizophrenia and its relationship with symptom change. Additionally, we investigated the test-retest reliability of [18F]-FDOPA PET in schizophrenia to determine its potential as a biomarker for drug discovery. METHODS: Twenty patients with schizophrenia received symptom measures and [18F]-FDOPA PET scans, before and after being randomised to AUT00206 or placebo groups for up to 28 days treatment. RESULTS: AUT00206 had no significant effect on DA synthesis capacity. However, there was a correlation between reduction in striatal dopamine synthesis capacity (indexed as Kicer) and reduction in symptoms, in the AUT00206 group (r = 0.58, p = 0.03). This was not observed in the placebo group (r = -0.15, p = 0.75), although the placebo group may have been underpowered to detect an effect. The intraclass correlation coefficients of [18F]-FDOPA indices in the placebo group ranged from 0.83 to 0.93 across striatal regions. CONCLUSIONS: The relationship between reduction in DA synthesis capacity and improvement in symptoms in the AUT00206 group provides evidence for a pharmacodynamic effect of the Kv3 channel modulator. The lack of a significant overall reduction in DA synthesis capacity in the AUT00206 group could be due to variability and the low number of subjects in this study. These findings support further investigation of Kv3 channel modulators for schizophrenia treatment. [18F]-FDOPA PET imaging showed very good test-retest reliability in patients with schizophrenia.


Subject(s)
Dopamine , Schizophrenia , Biomarkers , Corpus Striatum/diagnostic imaging , Dihydroxyphenylalanine/pharmacology , Dihydroxyphenylalanine/therapeutic use , Dopamine/pharmacology , Humans , Positron-Emission Tomography/methods , Potassium Channels/pharmacology , Potassium Channels/therapeutic use , Reproducibility of Results , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Shaw Potassium Channels
SELECTION OF CITATIONS
SEARCH DETAIL
...