Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
BMC Plant Biol ; 24(1): 437, 2024 May 22.
Article En | MEDLINE | ID: mdl-38773387

BACKGROUND: Unlike Transposable Elements (TEs) and gene/genome duplication, the role of the so-called nuclear plastid DNA sequences (NUPTs) in shaping the evolution of genome architecture and function remains poorly studied. We investigate here the functional and evolutionary fate of NUPTs in the orphan crop Moringa oleifera (moringa), featured by the highest fraction of plastid DNA found so far in any plant genome, focusing on (i) any potential biases in their distribution in relation to specific nuclear genomic features, (ii) their contribution to the emergence of new genes and gene regions, and (iii) their impact on the expression of target nuclear genes. RESULTS: In agreement with their potential mutagenic effect, NUPTs are underrepresented among structural genes, although their overall transcription levels and broadness were only lower when involved exonic regions; the occurrence of plastid DNA generally did not result in a broader expression, except among those affected in introns by older NUPTs. In contrast, we found a strong enrichment of NUPTs among specific superfamilies of retrotransposons and several classes of RNA genes, including those participating in the protein biosynthetic machinery (i.e., rRNA and tRNA genes) and a specific class of regulatory RNAs. A significant fraction of NUPT RNA genes was found to be functionally expressed, thus potentially contributing to the nuclear pool. CONCLUSIONS: Our results complete our view of the molecular factors driving the evolution of nuclear genome architecture and function, and support plastid DNA in moringa as a major source of (i) genome complexity and (ii) the nuclear pool of RNA genes.


Genome, Plant , Moringa oleifera , Moringa oleifera/genetics , Plastids/genetics , Cell Nucleus/genetics , Crops, Agricultural/genetics , Evolution, Molecular , RNA, Plant/genetics , DNA, Plant/genetics , Genes, Plant
2.
BMC Genomics ; 25(1): 60, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38225585

BACKGROUND: Beyond the massive amounts of DNA and genes transferred from the protoorganelle genome to the nucleus during the endosymbiotic event that gave rise to the plastids, stretches of plastid DNA of varying size are still being copied and relocated to the nuclear genome in a process that is ongoing and does not result in the concomitant shrinking of the plastid genome. As a result, plant nuclear genomes feature small, but variable, fraction of their genomes of plastid origin, the so-called nuclear plastid DNA sequences (NUPTs). However, the mechanisms underlying the origin and fixation of NUPTs are not yet fully elucidated and research on the topic has been mostly focused on a limited number of species and of plastid DNA. RESULTS: Here, we leveraged a chromosome-scale version of the genome of the orphan crop Moringa oleifera, which features the largest fraction of plastid DNA in any plant nuclear genome known so far, to gain insights into the mechanisms of origin of NUPTs. For this purpose, we examined the chromosomal distribution and arrangement of NUPTs, we explicitly modeled and tested the correlation between their age and size distribution, we characterized their sites of origin at the chloroplast genome and their sites of insertion at the nuclear one, as well as we investigated their arrangement in clusters. We found a bimodal distribution of NUPT relative ages, which implies NUPTs in moringa were formed through two separate events. Furthermore, NUPTs from every event showed markedly distinctive features, suggesting they originated through distinct mechanisms. CONCLUSIONS: Our results reveal an unanticipated complexity of the mechanisms at the origin of NUPTs and of the evolutionary forces behind their fixation and highlight moringa species as an exceptional model to assess the impact of plastid DNA in the evolution of the architecture and function of plant nuclear genomes.


Genome, Plastid , Moringa oleifera , Moringa oleifera/genetics , Evolution, Molecular , Plastids/genetics , Genome, Plant , DNA, Plant/genetics , Plants/genetics , Cell Nucleus/genetics
3.
Comput Struct Biotechnol J ; 21: 5049-5065, 2023.
Article En | MEDLINE | ID: mdl-37867965

Performing lifespan assays with Caenorhabditis elegans (C. elegans) nematodes manually is a time consuming and laborious task. Therefore, automation is necessary to increase productivity. In this paper, we propose a method to automate the counting of live C. elegans using deep learning. The survival curves of the experiment are obtained using a sequence formed by an image taken on each day of the assay. Solving this problem would require a very large labeled dataset; thus, to facilitate its generation, we propose a simplified image-based strategy. This simplification consists of transforming the real images of the nematodes in the Petri dish to a synthetic image, in which circular blobs are drawn on a constant background to mark the position of the C. elegans. To apply this simplification method, it is divided into two steps. First, a Faster R-CNN network detects the C. elegans, allowing its transformation into a synthetic image. Second, using the simplified image sequence as input, a regression neural network is in charge of predicting the count of live nematodes on each day of the experiment. In this way, the counting network was trained using a simple simulator, avoiding labeling a very large real dataset or developing a realistic simulator. Results showed that the differences between the curves obtained by the proposed method and the manual curves are not statistically significant for either short-lived N2 (p-value log rank test 0.45) or long-lived daf-2 (p-value log rank test 0.83) strains.

4.
Comput Struct Biotechnol J ; 21: 4914-4922, 2023.
Article En | MEDLINE | ID: mdl-37867974

The nematode Caenorhabditis elegans (C. elegans) is of significant interest for research into neurodegenerative diseases, aging, and drug screening. However, conducting these assays manually is a tedious and time-consuming process. This paper proposes a methodology to achieve a generalist C. elegans detection algorithm, as previous work only focused on dataset-specific detection, tailored exclusively to the characteristics and appearance of the images in a given dataset. The main aim of our study is to achieve a solution that allows for robust detection, regardless of the image-capture system used, with the potential to serve as a basis for the automation of numerous assays. These potential applications include worm counting, worm tracking, motion detection and motion characterization. To train this model, a dataset consisting of a wide variety of appearances adopted by C. elegans has been curated and dataset augmentation methods have been proposed and evaluated, including synthetic image generation. The results show that the model achieves an average precision of 89.5% for a wide variety of C. elegans appearances that were not used during training, thereby validating its generalization capabilities.

5.
Heliyon ; 9(4): e14715, 2023 Apr.
Article En | MEDLINE | ID: mdl-37025880

Pose estimation of C. elegans in image sequences is challenging and even more difficult in low-resolution images. Problems range from occlusions, loss of worm identity, and overlaps to aggregations that are too complex or difficult to resolve, even for the human eye. Neural networks, on the other hand, have shown good results in both low-resolution and high-resolution images. However, training in a neural network model requires a very large and balanced dataset, which is sometimes impossible or too expensive to obtain. In this article, a novel method for predicting C. elegans poses in cases of multi-worm aggregation and aggregation with noise is proposed. To solve this problem we use an improved U-Net model capable of obtaining images of the next aggregated worm posture. This neural network model was trained/validated using a custom-generated dataset with a synthetic image simulator. Subsequently, tested with a dataset of real images. The results obtained were greater than 75% in precision and 0.65 with Intersection over Union (IoU) values.

6.
Comput Struct Biotechnol J ; 21: 655-664, 2023.
Article En | MEDLINE | ID: mdl-36659931

In recent decades, assays with the nematode Caenorhabditis elegans (C. elegans) have enabled great advances to be made in research on aging. However, performing these assays manually is a laborious task. To solve this problem, numerous C. elegans assay automation techniques are being developed to increase throughput and accuracy. In this paper, a method for predicting the lifespan of C. elegans nematodes using a bimodal neural network is proposed and analyzed. Specifically, the model uses the sequence of images and the count of live C. elegans up to the current day to predict the lifespan curve termination. This network has been trained using a simulator to avoid the labeling costs of training such a model. In addition, a method for estimating the uncertainty of the model predictions has been proposed. Using this uncertainty, a criterion has been analyzed to decide at what point the assay could be halted and the user could rely on the model's predictions. The method has been analyzed and validated using real experiments. The results show that uncertainty is reduced from the mean lifespan and that most of the predictions obtained do not present statistically significant differences with respect to the curves obtained manually.

7.
Sci Rep ; 12(1): 1767, 2022 02 02.
Article En | MEDLINE | ID: mdl-35110654

Data from manual healthspan assays of the nematode Caenorhabditis elegans (C. elegans) can be complex to quantify. The first attempts to quantify motor performance were done manually, using the so-called thrashing or body bends assay. Some laboratories have automated these approaches using methods that help substantially to quantify these characteristic movements in small well plates. Even so, it is sometimes difficult to find differences in motor behaviour between strains, and/or between treated vs untreated worms. For this reason, we present here a new automated method that increases the resolution flexibility, in order to capture more movement details in large standard Petri dishes, in such way that those movements are less restricted. This method is based on a Cartesian robot, which enables high-resolution images capture in standard Petri dishes. Several cameras mounted strategically on the robot and working with different fields of view, capture the required C. elegans visual information. We have performed a locomotion-based healthspan experiment with several mutant strains, and we have been able to detect statistically significant differences between two strains that show very similar movement patterns.


Biological Assay/instrumentation , Caenorhabditis elegans/physiology , Locomotion , Longevity , Monitoring, Physiologic/methods , Robotics/methods , Animals
8.
Sensors (Basel) ; 21(16)2021 Aug 20.
Article En | MEDLINE | ID: mdl-34451062

Automatic tracking of Caenorhabditis elegans (C. egans) in standard Petri dishes is challenging due to high-resolution image requirements when fully monitoring a Petri dish, but mainly due to potential losses of individual worm identity caused by aggregation of worms, overlaps and body contact. To date, trackers only automate tests for individual worm behaviors, canceling data when body contact occurs. However, essays automating contact behaviors still require solutions to this problem. In this work, we propose a solution to this difficulty using computer vision techniques. On the one hand, a skeletonization method is applied to extract skeletons in overlap and contact situations. On the other hand, new optimization methods are proposed to solve the identity problem during these situations. Experiments were performed with 70 tracks and 3779 poses (skeletons) of C. elegans. Several cost functions with different criteria have been evaluated, and the best results gave an accuracy of 99.42% in overlapping with other worms and noise on the plate using the modified skeleton algorithm and 98.73% precision using the classical skeleton algorithm.


Algorithms , Caenorhabditis elegans , Animals , Skeleton
9.
Sensors (Basel) ; 21(14)2021 Jul 20.
Article En | MEDLINE | ID: mdl-34300683

The automation of lifespan assays with C. elegans in standard Petri dishes is a challenging problem because there are several problems hindering detection such as occlusions at the plate edges, dirt accumulation, and worm aggregations. Moreover, determining whether a worm is alive or dead can be complex as they barely move during the last few days of their lives. This paper proposes a method combining traditional computer vision techniques with a live/dead C. elegans classifier based on convolutional and recurrent neural networks from low-resolution image sequences. In addition to proposing a new method to automate lifespan, the use of data augmentation techniques is proposed to train the network in the absence of large numbers of samples. The proposed method achieved small error rates (3.54% ± 1.30% per plate) with respect to the manual curve, demonstrating its feasibility.


Caenorhabditis elegans , Deep Learning , Animals , Automation , Longevity , Neural Networks, Computer
10.
Sci Rep ; 11(1): 12289, 2021 06 10.
Article En | MEDLINE | ID: mdl-34112931

Traditionally Caenorhabditis elegans lifespan assays are performed by manually inspecting nematodes with a dissection microscope, which involves daily counting of live/dead worms cultured in Petri plates for 21-25 days. This manual inspection requires the screening of hundreds of worms to ensure statistical robustness, and is therefore a time-consuming approach. In recent years, various automated artificial vision systems have been reported to increase the throughput, however they usually provide less accurate results than manual assays. The main problems identified when using these vision systems are the false positives and false negatives, which occur due to culture media changes, occluded zones, dirtiness or condensation of the Petri plates. In this work, we developed and described a new C. elegans monitoring machine, SiViS, which consists of a flexible and compact platform design to analyse C. elegans cultures using the standard Petri plates seeded with E. coli. Our system uses an active vision illumination technique and different image-processing pipelines for motion detection, both previously reported, providing a fully automated image processing pipeline. In addition, this study validated both these methods and the feasibility of the SiViS machine for lifespan experiments by comparing them with manual lifespan assays. Results demonstrated that the automated system yields consistent replicates (p-value log rank test 0.699), and there are no significant differences between automated system assays and traditionally manual assays (p-value 0.637). Finally, although we have focused on the use of SiViS in longevity assays, the system configuration is flexible and can, thus, be adapted to other C. elegans studies such as toxicity, mobility and behaviour.


Caenorhabditis elegans/growth & development , Image Processing, Computer-Assisted , Longevity/physiology , Animals , Caenorhabditis elegans/genetics , Escherichia coli
11.
Entropy (Basel) ; 23(1)2021 Jan 18.
Article En | MEDLINE | ID: mdl-33477544

Recent advances in statistical inference have significantly expanded the toolbox of probabilistic modeling. Historically, probabilistic modeling has been constrained to very restricted model classes, where exact or approximate probabilistic inference is feasible. However, developments in variational inference, a general form of approximate probabilistic inference that originated in statistical physics, have enabled probabilistic modeling to overcome these limitations: (i) Approximate probabilistic inference is now possible over a broad class of probabilistic models containing a large number of parameters, and (ii) scalable inference methods based on stochastic gradient descent and distributed computing engines allow probabilistic modeling to be applied to massive data sets. One important practical consequence of these advances is the possibility to include deep neural networks within probabilistic models, thereby capturing complex non-linear stochastic relationships between the random variables. These advances, in conjunction with the release of novel probabilistic modeling toolboxes, have greatly expanded the scope of applications of probabilistic models, and allowed the models to take advantage of the recent strides made by the deep learning community. In this paper, we provide an overview of the main concepts, methods, and tools needed to use deep neural networks within a probabilistic modeling framework.

12.
Sci Rep ; 10(1): 22247, 2020 12 17.
Article En | MEDLINE | ID: mdl-33335258

One of the main problems when monitoring Caenorhabditis elegans nematodes (C. elegans) is tracking their poses by automatic computer vision systems. This is a challenge given the marked flexibility that their bodies present and the different poses that can be performed during their behaviour individually, which become even more complicated when worms aggregate with others while moving. This work proposes a simple solution by combining some computer vision techniques to help to determine certain worm poses and to identify each one during aggregation or in coiled shapes. This new method is based on the distance transformation function to obtain better worm skeletons. Experiments were performed with 205 plates, each with 10, 15, 30, 60 or 100 worms, which totals 100,000 worm poses approximately. A comparison of the proposed method was made to a classic skeletonisation method to find that 2196 problematic poses had improved by between 22% and 1% on average in the pose predictions of each worm.


Artificial Intelligence , Caenorhabditis elegans/anatomy & histology , Models, Anatomic , Skeleton/anatomy & histology , Algorithms , Animals , Image Processing, Computer-Assisted
13.
Entropy (Basel) ; 22(1)2020 Jan 19.
Article En | MEDLINE | ID: mdl-33285898

Socio-ecological systems are recognized as complex adaptive systems whose multiple interactions might change as a response to external or internal changes. Due to its complexity, the behavior of the system is often uncertain. Bayesian networks provide a sound approach for handling complex domains endowed with uncertainty. The aim of this paper is to analyze the impact of the Bayesian network structure on the uncertainty of the model, expressed as the Shannon entropy. In particular, three strategies for model structure have been followed: naive Bayes (NB), tree augmented network (TAN) and network with unrestricted structure (GSS). Using these network structures, two experiments are carried out: (1) the impact of the Bayesian network structure on the entropy of the model is assessed and (2) the entropy of the posterior distribution of the class variable obtained from the different structures is compared. The results show that GSS constantly outperforms both NB and TAN when it comes to evaluating the uncertainty of the entire model. On the other hand, NB and TAN yielded lower entropy values of the posterior distribution of the class variable, which makes them preferable when the goal is to carry out predictions.

14.
Sensors (Basel) ; 20(21)2020 Oct 22.
Article En | MEDLINE | ID: mdl-33105730

Nowadays, various artificial vision-based machines automate the lifespan assays of C. elegans. These automated machines present wider variability in results than manual assays because in the latter worms can be poked one by one to determine whether they are alive or not. Lifespan machines normally use a "dead or alive criterion" based on nematode position or pose changes, without poking worms. However, worms barely move on their last days of life, even though they are still alive. Therefore, a long monitoring period is necessary to observe motility in order to guarantee worms are actually dead, or a stimulus to prompt worm movement is required to reduce the lifespan variability measure. Here, a new automated vibrotaxis-based method for lifespan machines is proposed as a solution to prompt a motion response in all worms cultured on standard Petri plates in order to better distinguish between live and dead individuals. This simple automated method allows the stimulation of all animals through the whole plate at the same time and intensity, increasing the experiment throughput. The experimental results exhibited improved live-worm detection using this method, and most live nematodes (>93%) reacted to the vibration stimulus. This method increased machine sensitivity by decreasing results variance by approximately one half (from ±1 individual error per plate to ±0.6) and error in lifespan curve was reduced as well (from 2.6% to 1.2%).


Caenorhabditis elegans/physiology , Longevity , Taxis Response , Vibration , Animals , Biological Assay
15.
Sci Rep ; 10(1): 8729, 2020 05 26.
Article En | MEDLINE | ID: mdl-32457411

Automated lifespan determination for C. elegans cultured in standard Petri dishes is challenging. Problems include occlusions of Petri dish edges, aggregation of worms, and accumulation of dirt (dust spots on lids) during assays, etc. This work presents a protocol for a lifespan assay, with two image-processing pipelines applied to different plate zones, and a new data post-processing method to solve the aforementioned problems. Specifically, certain steps in the culture protocol were taken to alleviate aggregation, occlusions, contamination, and condensation problems. This method is based on an active illumination system and facilitates automated image sequence analysis, does not need human threshold adjustments, and simplifies the techniques required to extract lifespan curves. In addition, two image-processing pipelines, applied to different plate zones, were employed for automated lifespan determination. The first image-processing pipeline was applied to a wall zone and used only pixel level information because worm size or shape features were unavailable in this zone. However, the second image-processing pipeline, applied to the plate centre, fused information at worm and pixel levels. Simple death event detection was used to automatically obtain lifespan curves from the image sequences that were captured once daily throughout the assay. Finally, a new post-processing method was applied to the extracted lifespan curves to filter errors. The experimental results showed that the errors in automated counting of live worms followed the Gaussian distribution with a mean of 2.91% and a standard deviation of ±12.73% per Petri plate. Post-processing reduced this error to 0.54 ± 8.18% per plate. The automated survival curve incurred an error of 4.62 ± 2.01%, while the post-process method reduced the lifespan curve error to approximately 2.24 ± 0.55%.


Caenorhabditis elegans/physiology , Image Processing, Computer-Assisted/methods , Animals , Longevity , Normal Distribution , Pattern Recognition, Automated
16.
PLoS One ; 14(4): e0215548, 2019.
Article En | MEDLINE | ID: mdl-30990857

Lifespan and healthspan machines can undergo C. elegans image segmentation errors due to changes in lighting conditions, which produce non-uniform images. Most C. elegans monitoring machines use backlight techniques based on the transparency of both the container and media. Backlight illumination obtains high-contrast images with dark C. elegans and a bright background. However, changes in illumination or media transparency conditions can produce non-uniform images, which are currently alleviated by image processing techniques. Besides, these machines should avoid C. elegans exposure to light as much as possible because light stresses worms, and can even affect their lifespan, mainly when using (1) long exposure times, (2) high intensities or (3) wavelengths that come close to ultraviolet. However, if short exposure of worms to light is required for visual monitoring, then light can also be used as a movement stimulus. In this paper, an active backlight method is analysed. The proposed method consists of controlling the light intensities and wavelengths of an illumination dots matrix with PID regulators. These regulators adapt illumination to some changing conditions. The experimental results shows that this method simplifies the image segmentation problem because it is able to automatically compensate not only changes in media transparency throughout assay days, but also changes in ambient conditions, such as smooth condensation on the lid and light derivatives of the illumination source during its lifetime. In addition, the strategic application of wavelengths could be adapted for the requirements of each assay. For instance, a specific control strategy has been proposed to minimise stress to worms and trying to stimulate C. elegans movement in lifespan assays.


Automation, Laboratory , Caenorhabditis elegans/growth & development , Light , Lighting , Locomotion , Longevity , Animals
17.
Sensors (Basel) ; 17(8)2017 Aug 19.
Article En | MEDLINE | ID: mdl-28825627

The goal of this research work is to improve the accuracy of human pose estimation using the Deformation Part Model (DPM) without increasing computational complexity. First, the proposed method seeks to improve pose estimation accuracy by adding the depth channel to DPM, which was formerly defined based only on red-green-blue (RGB) channels, in order to obtain a four-dimensional DPM (4D-DPM). In addition, computational complexity can be controlled by reducing the number of joints by taking it into account in a reduced 4D-DPM. Finally, complete solutions are obtained by solving the omitted joints by using inverse kinematics models. In this context, the main goal of this paper is to analyze the effect on pose estimation timing cost when using dual quaternions to solve the inverse kinematics.

18.
Opt Express ; 20(25): 27691-6, 2012 Dec 03.
Article En | MEDLINE | ID: mdl-23262716

To obtain 3D information of large areas, wide angle lens cameras are used to reduce the number of cameras as much as possible. However, since images are high distorted, errors in point correspondences increase and 3D information could be erroneous. To increase the number of data from images and to improve the 3D information, trinocular sensors are used. In this paper a calibration method for a trinocular sensor formed with wide angle lens cameras is proposed. First pixels locations in the images are corrected using a set of constraints which define the image formation in a trinocular system. When pixels location are corrected, lens distortion and trifocal tensor is computed.


Artificial Intelligence , Image Interpretation, Computer-Assisted/methods , Lenses , Models, Theoretical , Pattern Recognition, Automated/methods , Algorithms , Calibration , Image Enhancement/instrumentation , Image Enhancement/methods , Image Interpretation, Computer-Assisted/instrumentation , Nonlinear Dynamics , Photogrammetry/methods , Security Measures
19.
Appl Opt ; 51(1): 89-101, 2012 Jan 01.
Article En | MEDLINE | ID: mdl-22270417

Camera calibration is a two-step process where first a linear algebraic approximation is followed by a nonlinear minimization. The nonlinear minimization adjusts the pin-hole and lens distortion models to the calibrating data. Since both models are coupled, nonlinear minimization can converge to a local solution easily. Moreover, nonlinear minimization is poorly conditioned since parameters with different effects in the minimization function are calculated simultaneously (some are in pixels, some in world coordinates, and some are lens distortion parameters). A local solution is adapted to parameters, which minimize the function easily, and the remaining parameters are just adapted to this solution. We propose a calibration method where traditional calibration steps are inverted. First, a nonlinear minimization is done, and after, camera parameters are computed in a linear step. Using projective geometry constraints in a nonlinear minimization process, detected point locations in the images are corrected. The pin-hole and lens distortion models are computed separately with corrected point locations. The proposed method avoids the coupling between both models. Also, the condition of nonlinear minimization increases since points coordinates are computed alone.

20.
Opt Lett ; 36(16): 3064-6, 2011 Aug 15.
Article En | MEDLINE | ID: mdl-21847161

Inaccuracies in the calibration of a stereoscopic system appear with errors in point correspondences between both images and inexact points localization in each image. Errors increase if the stereoscopic system is composed of wide angle lens cameras. We propose a technique where detected points in both images are corrected before estimating the fundamental matrix and the lens distortion models. Since points are corrected first, errors in point correspondences and point localization are avoided. To correct point location in both images, geometrical and epipolar constraints are imposed in a nonlinear minimization problem. Geometrical constraints define the point localization in relation to its neighbors in the same image, and eipolar constraints represent the location of one point referred to its corresponding point in the other image.

...