Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
Pharmacol Biochem Behav ; 223: 173532, 2023 02.
Article in English | MEDLINE | ID: mdl-36822254

ABSTRACT

Aberrant cortical oscillations in the beta and gamma range are associated with symptoms of schizophrenia and other psychiatric conditions. We have thus investigated the ability of anterior cingulate cortex (ACC) in vitro to generate beta and gamma oscillations, and how these are affected by Group II metabotropic glutamate (mGlu) receptor activation and blockade of N-methyl-d-aspartate (NMDA) receptors. Activation of Group II mGlu receptors, and mGlu2 specifically, with orthosteric agonists reduced the power of both beta and gamma oscillations in ACC without a significant effect on oscillation peak frequencies. The NMDA receptor blocker phencyclidine (PCP), known to evoke certain schizophrenia-like symptoms in humans, elevated the power of beta oscillations in ACC and caused a shift in oscillation frequency from the gamma range to the beta range. These enhanced beta oscillations were reduced by the Group II mGlu receptor agonists. These results show that Group II mGlu receptors, and specifically mGlu2, modulate network oscillations. Furthermore, attenuation of the effect of PCP suggests that mGlu2 receptors may stabilise aberrant network activity. These results underline the importance of Group II mGlu receptors, and particularly mGlu2, as targets for the treatment of neuropsychiatric and neurodegenerative diseases.


Subject(s)
Receptors, Metabotropic Glutamate , Humans , Rats , Animals , Receptors, Metabotropic Glutamate/agonists , Phencyclidine , Gyrus Cinguli/metabolism , N-Methylaspartate
2.
Neuronal Signal ; 6(4): NS20210058, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36561092

ABSTRACT

The thalamus plays a pivotal role in the integration and processing of sensory, motor, and cognitive information. It is therefore important to understand how the thalamus operates in states of both health and disease. In the present review, we discuss the function of the Group II metabotropic glutamate (mGlu) receptors within thalamic circuitry, and how they may represent therapeutic targets in treating disease states associated with thalamic dysfunction.

3.
Br J Pharmacol ; 179(8): 1607-1619, 2022 04.
Article in English | MEDLINE | ID: mdl-34355803

ABSTRACT

BACKGROUND AND PURPOSE: As the thalamus underpins almost all aspects of behaviour, it is important to understand how the thalamus operates. Group II metabotropic glutamate (mGlu2 /mGlu3 ) receptor activation reduces inhibition in thalamic nuclei originating from the surrounding thalamic reticular nucleus (TRN). Whilst an mGlu2 component to this effect has been reported, in this study, we demonstrate that it is likely, largely mediated via mGlu3 . EXPERIMENTAL APPROACH: The somatosensory ventrobasal thalamus (VB) is an established model for probing fundamental principles of thalamic function. In vitro slices conserving VB-TRN circuitry from wild-type and mGlu3 knockout mouse brains were used to record IPSPs and mIPSCs. In vivo extracellular recordings were made from VB neurons in anaesthetised rats. A range of selective pharmacological agents were used to probe Group II mGlu receptor function (agonist, LY354740; antagonist, LY341495; mGlu2 positive allosteric modulator, LY487379 and mixed mGlu2 agonist/mGlu3 antagonist LY395756). KEY RESULTS: The in vitro and in vivo data are complementary and suggest that mGlu3 receptor activation is largely responsible for potentiating responses to somatosensory stimulation by reducing inhibition from the TRN. CONCLUSIONS AND IMPLICATIONS: mGlu3 receptor activation in the VB likely enables important somatosensory information to be discerned from background activity. These mGlu3 receptors are likely to be endogenously activated via 'glutamate spillover'. In cognitive thalamic nuclei, this mechanism may be of importance in governing attentional processes. Positive allosteric modulation of endogenous mGlu3 receptor activation may therefore enhance cognitive function in pathophysiological disease states, such as schizophrenia, thus representing a highly specific therapeutic target. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Subject(s)
Receptors, Metabotropic Glutamate , Animals , Glutamic Acid/pharmacology , Mice , Mice, Knockout , Neurons , Rats , Receptors, Metabotropic Glutamate/metabolism , Thalamus/metabolism
5.
Dialogues Clin Neurosci ; 21(2): 149-157, 2019.
Article in English | MEDLINE | ID: mdl-31636489

ABSTRACT

The progressive changes in research paradigms observed in the largest pharmaceutical companies and the burgeoning of biotechnology startups over the last 10 years have generated a need for outsourcing research facilities. In parallel, progress made in the fields of genomics, protein expression in recombinant systems, and electrophysiological recording methods have offered new possibilities for the development of contract research organizations (CROs). Successful partnering between pharmaceutical companies and CROs largely depends upon the competences and scientific quality on offer for the discovery of novel active molecules and targets. Thus, it is critical to review the knowledge in the field of neuroscience research, how genetic approaches are augmenting our knowledge, and how they can be applied in the translation from the identification of potential molecules up to the first clinical trials. Taking these together, it is apparent that CROs have an important role to play in the neuroscience of drug discovery.
.


Los cambios progresivos en los paradigmas de investigación observados en las principales compañías farmacéuticas y el desarrollo de las nuevas empresas de biotecnología en los últimos 10 años han generado la necesidad de subcontratar las instalaciones de investigación. Paralelamente, el progreso realizado en los campos de la genómica, la expresión de proteínas en sistemas recombinantes y en los métodos de registro electrofisiológico han ofrecido nuevas posibilidades para el desarrollo de organizaciones de investigación por contrato (OIC). La asociación exitosa entre las compañías farmacéuticas y las OIC depende en gran medida de las competencias y la calidad científica que se ofrecen para el descubrimiento de nuevas moléculas activas y sitios de acción. Por lo tanto, es fundamental revisar el conocimiento en el campo de la investigación en neurociencia, cómo las aproximaciones genéticas están aumentando nuestro conocimiento y cómo se pueden aplicar en la traducción desde la identificación de potenciales moléculas hasta los ensayos clínicos iniciales. Tomando esto en conjunto, es evidente que las OIC tienen un papel importante que desempeñar en la neurociencia del descubrimiento de fármacos.


Les modifications observées durant les dix dernières années concernant les modèles organisationnels des grandes industries pharmaceutiques ainsi que la multiplication des entreprises de biotechnologies ont augmentés les besoins de recherches dans des laboratoires privés. En parallèle les progrès en génomique ainsi que dans les systèmes d'expression de protéines recombinantes ont ouvert de nouvelles possibilités pour le développement d'unités indépendantes qui offrent de la recherche sous contrats (CRO). Le succès des recherches distribuées entre partenaires pharmaceutiques et les unités de recherche privées dépend essentiellement des compétences ainsi que des qualités scientifiques qui peuvent être offertes pour la découverte de nouvelles molécules agissant sur une cible définie. Il est important d'examiner, comment les nouvelles découvertes effectuées dans le domaine de la génétique et l'accroissement de nos connaissances, peuvent se traduire dans l'identification de nouvelles molécules à visée thérapeutiques depuis la recherche fondamentale jusqu'aux essais cliniques. D'une manière globale, il apparaît que les unités de recherche contractuelles ont un rôle majeur à jouer dans le domaine de la recherche en neuroscience ainsi que dans la découverte de nouveaux principes actifs.


Subject(s)
Central Nervous System Agents/therapeutic use , Drug Development/methods , Drug Discovery/methods , Mental Disorders/drug therapy , Mental Disorders/genetics , Receptors, Cell Surface/genetics , Contract Services , Genomics/methods , Humans , Neurosciences/methods
6.
7.
Curr Neuropharmacol ; 16(1): 2, 2018.
Article in English | MEDLINE | ID: mdl-29301483
8.
Neurobiol Aging ; 60: 34-43, 2017 12.
Article in English | MEDLINE | ID: mdl-28917665

ABSTRACT

Mitochondria play a major role in aging. Over time, mutations accumulate in mitochondrial DNA leading to reduced adenosine triphosphate (ATP) production and increased production of damaging reactive oxygen species. If cells fail to cope, they die. Reduced ATP will result in declining cellular membrane potentials leading to reduced central nervous system function. However, aged mitochondrial function is improved by long wavelength light (670 nm) absorbed by cytochrome c oxidase in mitochondrial respiration. In Drosophila, lifelong 670-nm exposure extends lifespan and improves aged mobility. Here, we ask if improved mitochondrial metabolism can reduce functional senescence in metabolism, sensory, locomotor, and cognitive abilities in old flies exposed to 670 nm daily for 1 week. Exposure significantly increased cytochrome c oxidase activity, whole body energy storage, ATP and mitochondrial DNA content, and reduced reactive oxygen species. Retinal function and memory were also significantly improved to levels found in 2-week-old flies. Mobility improved by 60%. The mode of action is likely related to improved energy homeostasis increasing ATP availability for ionic ATPases critical for maintenance of neuronal membrane potentials. 670-nm light exposure may be a simple route for resolving problems of aging.


Subject(s)
Aging/physiology , Aging/radiation effects , Cognition/physiology , Drosophila melanogaster/physiology , Drosophila melanogaster/radiation effects , Energy Metabolism/radiation effects , Infrared Rays , Mitochondria/metabolism , Mitochondria/radiation effects , Motor Activity/physiology , Visual Acuity/physiology , Adenosine Triphosphate/metabolism , Aging/psychology , Animals , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/radiation effects , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/radiation effects , Membrane Potentials , Memory/physiology , Memory/radiation effects , Reactive Oxygen Species/metabolism , Retina/physiology , Retina/radiation effects
9.
Neuropharmacology ; 112(Pt B): 365-372, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27342123

ABSTRACT

Cinnabarinic and xanthurenic acids are kynurenine metabolites generated by oxidative dimerization of 3-hydroxyanthranilic acid and transamination of 3-hydroxykynurenine, respectively. Recent evidence suggests that both compounds can affect brain function and neurotransmission and interact with metabotropic glutamate (mGlu) receptors. Cinnabarinic acid behaves as an orthosteric agonist of mGlu4 receptors, whereas some of the in vitro and in vivo effects produced by xanthurenic acid appear to be mediated by the activation of mGlu2 and mGlu3 receptors. Cinnabarinic acid could play an important role in mechanisms of neuroinflammation acting as a linking bridge between the immune system and the CNS. Xanthurenic acid has potential implications in the pathophysiology of schizophrenia and is a promising candidate as a peripheral biomarker of the disorder. The action of cinnabarinic acid and xanthurenic acid may extend beyond the regulation of mGlu receptors and may involve several diverse molecular targets, such as the aryl hydrocarbon receptor for cinnabarinic acid and vesicular glutamate transporters for xanthurenic acid. The growing interest on these two metabolites of the kynurenine pathway may unravel new aspects in the complex interaction between tryptophan metabolism and brain function, and lead to the discovery of new potential targets for the treatment of neurological and psychiatric disorders. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.


Subject(s)
Kynurenine/metabolism , Oxazines/metabolism , Receptors, Metabotropic Glutamate/metabolism , Xanthurenates/metabolism , Animals , Humans , Oxazines/pharmacology , Xanthurenates/pharmacology
10.
PLoS One ; 11(11): e0166531, 2016.
Article in English | MEDLINE | ID: mdl-27846310

ABSTRACT

Global pollination is threatened by declining insect pollinator populations that may be linked to neonicotinoid pesticide use. Neonicotinoids over stimulate neurons and depolarize their mitochondria, producing immobility and death. However, mitochondrial function can be improved by near infrared light absorbed by cytochrome c oxidase in mitochondrial respiration. In flies, daily exposure to 670nm light throughout life increases average lifespan and aged mobility, and reduces systemic inflammation. Here we treat bumble bees with Imidacloprid a common neonicotinoid. This undermined ATP and rapidly induced immobility and reduced visual function and survival. Bees exposed to insecticide and daily to 670nm light showed corrected ATP levels and significantly improved mobility allowing them to feed. Physiological recordings from eyes revealed that light exposure corrected deficits induced by the pesticide. Overall, death rates in bees exposed to insecticide but also given 670nm light were indistinguishable from controls. When Imidacloprid and light exposure were withdrawn, survival was maintained. Bees and insects generally cannot see deep red light so it does not disturb their behaviour. Hence, we show that deep red light exposure that improves mitochondrial function, reverses the sensory and motor deficits induced by Imidacloprid. These results may have important implications as light delivery is economic and can be placed in hives/colonies.


Subject(s)
Bees/radiation effects , Imidazoles/toxicity , Infrared Rays , Insecticides/toxicity , Mitochondria/radiation effects , Nitro Compounds/toxicity , Vision, Ocular/radiation effects , Adenosine Triphosphate/agonists , Adenosine Triphosphate/biosynthesis , Animals , Bees/drug effects , Bees/physiology , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Flowers/physiology , Mitochondria/drug effects , Mitochondria/metabolism , Motor Activity/drug effects , Motor Activity/physiology , Motor Activity/radiation effects , Neonicotinoids , Neurons/drug effects , Neurons/metabolism , Neurons/radiation effects , Pollination/physiology , Vision, Ocular/drug effects , Vision, Ocular/physiology
11.
Purinergic Signal ; 12(4): 611-625, 2016 12.
Article in English | MEDLINE | ID: mdl-27393519

ABSTRACT

P2X7Rs are distributed throughout all layers of the retina, and thus, their localisation on various cell types puts into question their specific site(s) of action. Using a dark-adapted, ex vivo mouse retinal whole mount preparation, the present study aimed to characterise the effect of P2X7R activation on light-evoked, excitatory RGC ON-field excitatory post-synaptic potentials (fEPSPs) and on outer retinal electroretinogram (ERG) responses under comparable conditions. The pharmacologically isolated NMDA receptor-mediated RGC ON-fEPSP was reduced in the presence of BzATP, an effect which was significantly attenuated by A438079 and other selective P2X7R antagonists A804598 or AF27139. In physiological Krebs medium, BzATP induced a significant potentiation of the ERG a-wave, with a concomitant reduction in the b-wave and the power of the oscillatory potentials. Conversely, in the pharmacologically modified Mg2+-free perfusate, BzATP reduced both the a-wave and b-wave. The effects of BzATP on the ERG components were suppressed by A438079. A role for P2X7R function in visual processing in both the inner and outer retina under physiological conditions remains controversial. The ON-fEPSP was significantly reduced in the presence of A804598 but not by A438079 or AF27139. Furthermore, A438079 did not have any effect on the ERG components in physiological Krebs but potentiated and reduced the a-wave and b-wave, respectively, when applied to the pharmacologically modified medium. Therefore, activation of P2X7Rs affects the function in the retinal ON pathway. The presence of a high concentration of extracellular ATP would most likely contribute to the modulation of visual transmission in the retina in the pathophysiological microenvironment.


Subject(s)
Evoked Potentials, Visual/drug effects , Excitatory Postsynaptic Potentials/drug effects , Receptors, Purinergic P2X7/metabolism , Retina/drug effects , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Electroretinography , Evoked Potentials, Visual/physiology , Excitatory Postsynaptic Potentials/physiology , Guanidines/pharmacology , Mice , Mice, Inbred C57BL , Photic Stimulation , Purinergic P2X Receptor Agonists/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Retina/physiology , Tetrazoles/pharmacology
13.
Proc Natl Acad Sci U S A ; 112(22): 7085-90, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25901330

ABSTRACT

Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on the input driving it in an iterative process.


Subject(s)
Discrimination, Psychological/physiology , Pattern Recognition, Visual/physiology , Thalamus/physiology , Visual Perception/physiology , Animals , Geniculate Bodies/physiology , Macaca mulatta , Photic Stimulation
14.
Biol Lett ; 11(3)2015 Mar.
Article in English | MEDLINE | ID: mdl-25788488

ABSTRACT

Ageing is an irreversible cellular decline partly driven by failing mitochondrial integrity. Mitochondria accumulate DNA mutations and reduce ATP production necessary for cellular metabolism. This is associated with inflammation. Near-infrared exposure increases retinal ATP in old mice via cytochrome c oxidase absorption and reduces inflammation. Here, we expose fruitflies daily to 670 nm radiation, revealing elevated ATP and reduced inflammation with age. Critically, there was a significant increase in average lifespan: 100-175% more flies survived into old age following 670 nm exposure and these had significantly improved mobility. This may be a simple route to extending lifespan and improving function in old age.


Subject(s)
Adenosine Triphosphate/metabolism , Infrared Rays , Longevity/radiation effects , Mitochondria/radiation effects , Aging/physiology , Animals , Drosophila melanogaster , Inflammation , Locomotion/radiation effects , Male , Mitochondria/metabolism
15.
Exp Eye Res ; 127: 270-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25151301

ABSTRACT

This review highlights recent findings that describ how purines modulate the physiological and pathophysiological responses of ocular tissues. For example, in lacrimal glands the cross-talk between P2X7 receptors and both M3 muscarinic receptors and α1D-adrenergic receptors can influence tear secretion. In the cornea, purines lead to post-translational modification of EGFR and structural proteins that participate in wound repair in the epithelium and influence the expression of matrix proteins in the stroma. Purines act at receptors on both the trabecular meshwork and ciliary epithelium to modulate intraocular pressure (IOP); ATP-release pathways of inflow and outflow cells differ, possibly permitting differential modulation of adenosine delivery. Modulators of trabecular meshwork cell ATP release include cell volume, stretch, extracellular Ca(2+) concentration, oxidation state, actin remodeling and possibly endogenous cardiotonic steroids. In the lens, osmotic stress leads to ATP release following TRPV4 activation upstream of hemichannel opening. In the anterior eye, diadenosine polyphosphates such as Ap4A act at P2 receptors to modulate the rate and composition of tear secretion, impact corneal wound healing and lower IOP. The Gq11-coupled P2Y1-receptor contributes to volume control in Müller cells and thus the retina. P2X receptors are expressed in neurons in the inner and outer retina and contribute to visual processing as well as the demise of retinal ganglion cells. In RPE cells, the balance between extracellular ATP and adenosine may modulate lysosomal pH and the rate of lipofuscin formation. In optic nerve head astrocytes, mechanosensitive ATP release via pannexin hemichannels, coupled with stretch-dependent upregulation of pannexins, provides a mechanism for ATP signaling in chronic glaucoma. With so many receptors linked to divergent functions throughout the eye, ensuring the transmitters remain local and stimulation is restricted to the intended target may be a key issue in understanding how physiological signaling becomes pathological in ocular disease.


Subject(s)
Eye Diseases/metabolism , Eye/metabolism , Purine Nucleosides/physiology , Purine Nucleotides/physiology , Animals , Astrocytes/metabolism , Cornea/metabolism , Ependymoglial Cells/metabolism , Eye/cytology , Eye Diseases/pathology , Humans , Lacrimal Apparatus/metabolism , Lens, Crystalline/metabolism , Retinal Neurons/metabolism , Retinal Pigment Epithelium/metabolism , Signal Transduction/physiology , Trabecular Meshwork/metabolism
16.
Curr Eye Res ; 39(9): 953-63, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24754236

ABSTRACT

PURPOSE: Increasing evidence shows that structural changes in dendrites play an important role in neuronal degenerative processes. The aims of this study were to characterize and delineate morphological changes of dendrites in retinal ganglion cells (RGCs) and their central target neurons in the superior colliculus (SC) and lateral geniculate nucleus (LGN) in experimental rat glaucoma. METHODS: Chronic ocular hypertension (OHT) was surgically induced in rats and animals were sacrificed at 1, 4, 8, 16 and 32 weeks following IOP elevation. Animals without IOP elevation served as normal control. Dendritic morphology of neurons was visualized by ex vivo DiI labelling using confocal microscopy and dendritic length and number was quantified using Image J. RESULTS: We found significant dendritic shrinkage (p < 0.001) and loss (p < 0.001) in RGCs and neurons in the SC and LGN in OHT animals compared to age-matched controls. Analysis of the temporal morphological profiles among them revealed the RGCs to have the earliest changes compared to the SC and LGN although the most prominent changes occurred in the SC. CONCLUSION: Our study has demonstrated that OHT results in dendritic changes of the neurons throughout the visual pathways, from RGCs to SC cells and LGN cells, suggesting that both the retina and the brain should be targeted when considering diagnosis and therapeutic strategies for glaucoma.


Subject(s)
Dendrites/pathology , Disease Models, Animal , Ocular Hypertension/pathology , Retinal Ganglion Cells/pathology , Visual Pathways/pathology , Animals , Geniculate Bodies/pathology , Intraocular Pressure , Male , Microscopy, Confocal , Rats , Superior Colliculi/pathology , Tonometry, Ocular
17.
Curr Eye Res ; 39(5): 472-86, 2014 May.
Article in English | MEDLINE | ID: mdl-24215221

ABSTRACT

PURPOSE/AIM: The aim of the study was to investigate the long-term functional changes that may occur in the retina and visual cortex in a rat ocular hypertension (OHT) model of glaucoma, used in our lab for treatment studies, using electroretinogram (ERG) and visual-evoked potential (VEP) cortical recordings in order to test the hypothesis that experimental glaucoma has differential retinal and central effects. MATERIALS AND METHODS: Experimental glaucoma was induced unilaterally in Dark Agouti rats using hypertonic saline injection into the episcleral veins. After 3, 8, 16 and 26 weeks, ERGs and VEPs were recorded under scotopic conditions using brief full-field white flashes (10 µcd s m(-2) to 10.4 cd s m(-2)) and under photopic conditions using a rod-adapting background and white light flashes (0.13-10.4 cd s m(-2)). RESULTS: At 16 and 26 weeks after OHT induction, there was a significant reduction in the amplitudes of the a- (50% and 30% of unoperated eye values, respectively) and b-waves (55% and 40%, respectively) of the scotopic ERG and the b-waves of the photopic ERG (55% and 45%, respectively) in the glaucomatous eyes. However, no significant changes in the VEPs simultaneously recorded over the visual cortex were seen at any of the time points. CONCLUSIONS: The reductions in ERG amplitudes suggest that this model of glaucoma not only causes retinal ganglion cell (RGC) degeneration but also degeneration of the outer retinal cells, and this was confirmed by histology showing a reduction in the outer retinal layers in the glaucomatous eyes. Cortical VEPs did not show detrimental effects suggesting that the retinal damage in this model was not extensive enough to be detected with the VEP methods used or that there could be central compensation in this model of glaucoma.


Subject(s)
Electroretinography , Evoked Potentials, Visual/physiology , Glaucoma/physiopathology , Ocular Hypertension/physiopathology , Retina/physiology , Retinal Degeneration/physiopathology , Animals , Disease Models, Animal , Intraocular Pressure/physiology , Male , Rats, Inbred Strains , Retinal Ganglion Cells/physiology
18.
J Pharmacol Exp Ther ; 344(3): 624-36, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23257312

ABSTRACT

Metabotropic glutamate receptor 7 (mGlu(7)) has been suggested to be a promising novel target for treatment of a range of disorders, including anxiety, post-traumatic stress disorder, depression, drug abuse, and schizophrenia. Here we characterized a potent and selective mGlu(7) negative allosteric modulator (NAM) (+)-6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one (ADX71743). In vitro, Schild plot analysis and reversibility tests at the target confirmed the NAM properties of the compound and attenuation of L-(+)-2-amino-4-phosphonobutyric acid-induced synaptic depression confirmed activity at the native receptor. The pharmacokinetic analysis of ADX71743 in mice and rats revealed that it is bioavailable after s.c. administration and is brain penetrant (cerebrospinal fluid concentration/total plasma concentration ratio at C(max) = 5.3%). In vivo, ADX71743 (50, 100, 150 mg/kg, s.c.) caused no impairment of locomotor activity in rats and mice or activity on rotarod in mice. ADX71743 had an anxiolytic-like profile in the marble burying and elevated plus maze tests, dose-dependently reducing the number of buried marbles and increasing open arm exploration, respectively. Whereas ADX71743 caused a small reduction in amphetamine-induced hyperactivity in mice, it was inactive in the mouse 2,5-dimethoxy-4-iodoamphetamine-induced head twitch and the rat conditioned avoidance response tests. In addition, the compound was inactive in the mouse forced swim test. These data suggest that ADX71743 is a suitable compound to help unravel the physiologic role of mGlu(7) and to better understand its implication in central nervous system diseases. Our in vivo tests using ADX71743, reported here, suggest that pharmacological inhibition of mGlu(7) is a valid approach for developing novel pharmacotherapies to treat anxiety disorders, but may not be suitable for treatment of depression or psychosis.


Subject(s)
Behavior, Animal/drug effects , Oxazolone/pharmacology , Receptors, Metabotropic Glutamate/metabolism , Allosteric Regulation , Amphetamine/pharmacology , Animals , Anxiety Disorders/drug therapy , Anxiety Disorders/metabolism , Cell Line , Chromosome Pairing/drug effects , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Female , HEK293 Cells , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Oxazolone/pharmacokinetics , Protein Binding/drug effects , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology
19.
Stem Cells Transl Med ; 1(3): 188-99, 2012 Mar.
Article in English | MEDLINE | ID: mdl-23197778

ABSTRACT

Müller glia with stem cell characteristics have been identified in the adult human eye, and although there is no evidence that they regenerate retina in vivo, they can be induced to grow and differentiate into retinal neurons in vitro. We differentiated human Müller stem cells into retinal ganglion cell (RGC) precursors by stimulation with fibroblast growth factor 2 together with NOTCH inhibition using the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). Differentiation into RGC precursors was confirmed by gene and protein expression analysis, changes in cytosolic [Ca(2+)] in response to neurotransmitters, and green fluorescent protein (GFP) expression by cells transduced with a transcriptional BRN3b-GFP reporter vector. RGC precursors transplanted onto the inner retinal surface of Lister hooded rats depleted of RGCs by N-methyl-d-aspartate aligned onto the host RGC layer at the site of transplantation but did not extend long processes toward the optic nerve. Cells were observed extending processes into the RGC layer and expressing RGC markers in vivo. This migration was observed only when adjuvant anti-inflammatory and matrix degradation therapy was used for transplantation. RGC precursors induced a significant recovery of RGC function in the transplanted eyes as determined by improvement of the negative scotopic threshold response of the electroretinogram (indicative of RGC function). The results suggest that transplanted RGC precursors may be capable of establishing local interneuron synapses and possibly release neurotrophic factors that facilitate recovery of RGC function. These cells constitute a promising source of cells for cell-based therapies to treat retinal degenerative disease caused by RGC dysfunction.


Subject(s)
Cell Differentiation , Neuroglia/cytology , Regeneration/physiology , Retinal Ganglion Cells/cytology , Retinal Neurons/cytology , Stem Cell Transplantation , Stem Cells/cytology , Adult , Animals , Cell Movement , Electroretinography , Green Fluorescent Proteins/metabolism , Humans , Neurites/metabolism , Neuroglia/metabolism , Rats , Retinal Ganglion Cells/metabolism , Retinal Neurons/metabolism , Stem Cells/metabolism , Transcription Factor Brn-3B/genetics
20.
J Neurosci ; 32(45): 15946-51, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23136432

ABSTRACT

Many cells in both the central visual system and other sensory systems exhibit a center surround organization in their receptive field, where the response to a centrally placed stimulus is modified when a surrounding area is also stimulated. This can follow from laterally directed connections in the local circuit at the level of the cell in question but could also involve more complex interactions. In the lateral geniculate nucleus (LGN), the cells relaying the retinal input display a concentric, center surround organization that in part follows from the similar organization characterizing the retinal cells providing their input. However, local thalamic inhibitory interneurons also play a role, and as we examine here, feedback from the visual cortex too. Here, we show in the primate (macaque) that spatially organized cortical feedback provides a clear and differential influence serving to enhance both responses to stimulation within the center of the receptive field and the ability of the nonclassical surround mechanism to attenuate this. In short, both center and surround mechanisms are influenced by the feedback. This dynamically sharpens the spatial focus of the receptive field and introduces nonlinearities from the cortical mechanism into the LGN.


Subject(s)
Feedback, Physiological/physiology , Neurons/physiology , Thalamus/physiology , Visual Pathways/physiology , Visual Perception/physiology , Animals , Female , Geniculate Bodies/physiology , Macaca mulatta , Photic Stimulation , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL