Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Mater ; 36(6): 2898-2906, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38558914

ABSTRACT

Grain boundaries (GBs) play an important role in determining the optoelectronic properties of perovskites, requiring an atomistic understanding of the underlying mechanisms. Strain engineering has recently been employed in perovskite solar cells, providing a novel perspective on the role of perovskite GBs. Here, we theoretically investigate the impact of axial strain on the geometric and electronic properties of a common CsPbBr3 GB. We develop a machine learning force field and perform ab initio calculations to analyze the behavior of GB models with different axial strains on a nanosecond time scale. Our results demonstrate that compressing the GB efficiently suppresses structural fluctuations and eliminates trap states originating from large-scale distortions. The GB becomes more amorphous under compressive strain, which makes the relationship between the electronic structure and axial strain nonmonotonic. These results can help clarify the conflicts in perovskite GB experiments.

2.
Commun Biol ; 5(1): 457, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35552496

ABSTRACT

Transcriptional pausing is crucial for the timely expression of genetic information. Biochemical methods quantify the half-life of paused RNA polymerase (RNAP) by monitoring restarting complexes across time. However, this approach may produce apparent half-lives that are longer than true pause escape rates in biological contexts where multiple consecutive pause sites are present. We show here that the 6-nitropiperonyloxymethyl (NPOM) photolabile group provides an approach to monitor transcriptional pausing in biological systems containing multiple pause sites. We validate our approach using the well-studied his pause and show that an upstream RNA sequence modulates the pause half-life. NPOM was also used to study a transcriptional region within the Escherichia coli thiC riboswitch containing multiple consecutive pause sites. We find that an RNA hairpin structure located upstream to the region affects the half-life of the 5' most proximal pause site-but not of the 3' pause site-in contrast to results obtained using conventional approaches not preventing asynchronous transcription. Our results show that NPOM is a powerful tool to study transcription elongation dynamics within biologically complex systems.


Subject(s)
Escherichia coli Proteins , Transcription, Genetic , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL