Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Sci Rep ; 14(1): 5979, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472220

ABSTRACT

Quantitative assessment of retinal microvasculature in optical coherence tomography angiography (OCTA) images is important for studying, diagnosing, monitoring, and guiding the treatment of ocular and systemic diseases. However, the OCTA user community lacks universal and transparent image analysis tools that can be applied to images from a range of OCTA instruments and provide reliable and consistent microvascular metrics from diverse datasets. We present a retinal extension to the OCTA Vascular Analyser (OCTAVA) that addresses the challenges of providing robust, easy-to-use, and transparent analysis of retinal OCTA images. OCTAVA is a user-friendly, open-source toolbox that can analyse retinal OCTA images from various instruments. The toolbox delivers seven microvascular metrics for the whole image or subregions and six metrics characterising the foveal avascular zone. We validate OCTAVA using images collected by four commercial OCTA instruments demonstrating robust performance across datasets from different instruments acquired at different sites from different study cohorts. We show that OCTAVA delivers values for retinal microvascular metrics comparable to the literature and reduces their variation between studies compared to their commercial equivalents. By making OCTAVA publicly available, we aim to expand standardised research and thereby improve the reproducibility of quantitative analysis of retinal microvascular imaging. Such improvements will help to better identify more reliable and sensitive biomarkers of ocular and systemic diseases.


Subject(s)
Macula Lutea , Retinal Vessels , Reproducibility of Results , Fluorescein Angiography/methods , Microvessels , Tomography, Optical Coherence/methods
2.
Breast Cancer Res Treat ; 205(3): 521-531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38498102

ABSTRACT

PURPOSE: Age and body mass index (BMI) are critical considerations when assessing individual breast cancer risk, particularly for women with dense breasts. However, age- and BMI-standardized estimates of breast density are not available for screen-aged women, and little is known about the distribution of breast density in women aged < 40. This cross-sectional study uses three different modalities: optical breast spectroscopy (OBS), dual-energy X-ray absorptiometry (DXA), and mammography, to describe the distributions of breast density across categories of age and BMI. METHODS: Breast density measures were estimated for 1,961 Australian women aged 18-97 years using OBS (%water and %water + %collagen). Of these, 935 women had DXA measures (percent and absolute fibroglandular dense volume, %FGV and FGV, respectively) and 354 had conventional mammographic measures (percent and absolute dense area). The distributions for each breast density measure were described across categories of age and BMI. RESULTS: The mean age was 38 years (standard deviation = 15). Median breast density measures decreased with age and BMI for all three modalities, except for DXA-FGV, which increased with BMI and decreased after age 30. The variation in breast density measures was largest for younger women and decreased with increasing age and BMI. CONCLUSION: This unique study describes the distribution of breast density measures for women aged 18-97 using alternative and conventional modalities of measurement. While this study is the largest of its kind, larger sample sizes are needed to provide clinically useful age-standardized measures to identify women with high breast density for their age or BMI.


Subject(s)
Absorptiometry, Photon , Body Mass Index , Breast Density , Breast Neoplasms , Mammography , Humans , Female , Adult , Middle Aged , Aged , Adolescent , Young Adult , Mammography/methods , Aged, 80 and over , Cross-Sectional Studies , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/pathology , Australia/epidemiology , Age Factors , Breast/diagnostic imaging , Breast/pathology
3.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L393-L408, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38261720

ABSTRACT

Quantifying airway smooth muscle (ASM) in patients with asthma raises the possibility of improved and personalized disease management. Endobronchial polarization-sensitive optical coherence tomography (PS-OCT) is a promising quantitative imaging approach that is in the early stages of clinical translation. To date, only animal tissues have been used to assess the accuracy of PS-OCT to quantify absolute (rather than relative) ASM in cross sections with directly matched histological cross sections as validation. We report the use of whole fresh human and pig airways to perform a detailed side-by-side qualitative and quantitative validation of PS-OCT against gold-standard histology. We matched and quantified 120 sections from five human and seven pig (small and large) airways and linked PS-OCT signatures of ASM to the tissue structural appearance in histology. Notably, we found that human cartilage perichondrium can share with ASM the properties of birefringence and circumferential alignment of fibers, making it a significant confounder for ASM detection. Measurements not corrected for perichondrium overestimated ASM content several-fold (P < 0.001, paired t test). After careful exclusion of perichondrium, we found a strong positive correlation (r = 0.96, P < 0.00001) of ASM area measured by PS-OCT and histology, supporting the method's application in human subjects. Matching human histology further indicated that PS-OCT allows conclusions on the intralayer composition and in turn potential contractile capacity of ASM bands. Together these results form a reliable basis for future clinical studies.NEW & NOTEWORTHY Polarization-sensitive optical coherence tomography (PS-OCT) may facilitate in vivo measurement of airway smooth muscle (ASM). We present a quantitative validation correlating absolute ASM area from PS-OCT to directly matched histological cross sections using human tissue. A major confounder for ASM quantification was observed and resolved: fibrous perichondrium surrounding hyaline cartilage in human airways presents a PS-OCT signature similar to ASM for birefringence and optic axis orientation. Findings impact the development of automated methods for ASM segmentation.


Subject(s)
Asthma , Tomography, Optical Coherence , Humans , Swine , Animals , Tomography, Optical Coherence/methods , Respiratory System , Cartilage , Muscle, Smooth/diagnostic imaging
4.
Br J Cancer ; 128(9): 1701-1709, 2023 05.
Article in English | MEDLINE | ID: mdl-36828870

ABSTRACT

BACKGROUND: Breast density is a strong and potentially modifiable breast cancer risk factor. Almost everything we know about breast density has been derived from mammography, and therefore, very little is known about breast density in younger women aged <40. This study examines the acceptability and performance of two alternative breast density measures, Optical Breast Spectroscopy (OBS) and Dual X-ray Absorptiometry (DXA), in women aged 18-40. METHODS: Breast tissue composition (percent water, collagen, and lipid content) was measured in 539 women aged 18-40 using OBS. For a subset of 169 women, breast density was also measured via DXA (percent fibroglandular dense volume (%FGV), absolute dense volume (FGV), and non-dense volume (NFGV)). Acceptability of the measurement procedures was assessed using an adapted validated questionnaire. Performance was assessed by examining the correlation and agreement between the measures and their associations with known determinants of mammographic breast density. RESULTS: Over 93% of participants deemed OBS and DXA to be acceptable. The correlation between OBS-%water + collagen and %FGV was 0.48. Age and BMI were inversely associated with OBS-%water + collagen and %FGV and positively associated with OBS-%lipid and NFGV. CONCLUSIONS: OBS and DXA provide acceptable and viable alternative methods to measure breast density in younger women aged 18-40 years.


Subject(s)
Breast Density , Breast Neoplasms , Female , Humans , Breast/diagnostic imaging , Mammography/methods , Absorptiometry, Photon/methods , Lipids , Breast Neoplasms/diagnostic imaging , Risk Factors
5.
Sci Rep ; 13(1): 1122, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670141

ABSTRACT

Optical coherence tomography angiography (OCTA) is a non-invasive, high-resolution imaging modality with growing application in dermatology and microvascular assessment. Accepted reference values for OCTA-derived microvascular parameters in skin do not yet exist but need to be established to drive OCTA into the clinic. In this pilot study, we assess a range of OCTA microvascular metrics at rest and after post-occlusive reactive hyperaemia (PORH) in the hands and feet of 52 healthy people and 11 people with well-controlled type 2 diabetes mellitus (T2DM). We calculate each metric, measure test-retest repeatability, and evaluate correlation with demographic risk factors. Our study delivers extremity-specific, age-dependent reference values and coefficients of repeatability of nine microvascular metrics at baseline and at the maximum of PORH. Significant differences are not seen for age-dependent microvascular metrics in hand, but they are present for several metrics in the foot. Significant differences are observed between hand and foot, both at baseline and maximum PORH, for most of the microvascular metrics with generally higher values in the hand. Despite a large variability over a range of individuals, as is expected based on heterogeneous ageing phenotypes of the population, the test-retest repeatability is 3.5% to 18% of the mean value for all metrics, which highlights the opportunities for OCTA-based studies in larger cohorts, for longitudinal monitoring, and for assessing the efficacy of interventions. Additionally, branchpoint density in the hand and foot and changes in vessel diameter in response to PORH stood out as good discriminators between healthy and T2DM groups, which indicates their potential value as biomarkers. This study, building on our previous work, represents a further step towards standardised OCTA in clinical practice and research.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Humans , Pilot Projects , Diabetes Mellitus, Type 2/diagnostic imaging , Tomography, Optical Coherence/methods , Angiography , Risk Factors , Fluorescein Angiography/methods , Retinal Vessels
6.
Life (Basel) ; 12(12)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36556388

ABSTRACT

Femoral artery (FA) endothelial function is a promising biomarker of lower extremity vascular health for peripheral artery disease (PAD) prevention and treatment; however, the impact of age on FA endothelial function has not been reported in healthy adults. Therefore, we evaluated the reproducibility and acceptability of flow-mediated dilation (FMD) in the FA and brachial artery (BA) (n = 20) and performed cross-sectional FA- and BA-FMD measurements in healthy non-smokers aged 22−76 years (n = 50). FMD protocols demonstrated similar good reproducibility. Leg occlusion was deemed more uncomfortable than arm occlusion; thigh occlusion was less tolerated than forearm and calf occlusion. FA-FMD with calf occlusion was lower than BA-FMD (6.0 ± 1.1% vs 6.4 ± 1.3%, p = 0.030). Multivariate linear regression analysis indicated that age (−0.4%/decade) was a significant independent predictor of FA-FMD (R2 = 0.35, p = 0.002). The age-dependent decline in FMD did not significantly differ between FA and BA (pinteraction agexlocation = 0.388). In older participants, 40% of baseline FA wall shear stress (WSS) values were <5 dyne/cm2, which is regarded as pro-atherogenic. In conclusion, endothelial function declines similarly with age in the FA and the BA in healthy adults. The age-dependent FA enlargement results in a critical decrease in WSS that may explain part of the age-dependent predisposition for PAD.

7.
Food Funct ; 13(20): 10439-10448, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36164983

ABSTRACT

Background: diabetes and age are major risk factors for the development of lower extremity peripheral artery disease (PAD). Cocoa flavanol (CF) consumption is associated with lower risk for PAD and improves brachial artery (BA) endothelial function. Objectives: to assess if femoral artery (FA) endothelial function and dermal microcirculation are impaired in individuals with type 2 diabetes mellitus (T2DM) and evaluate the acute effect of CF consumption on FA endothelial function. Methods: in a randomised, controlled, double-blind, cross-over study, 22 individuals (n = 11 healthy, n = 11 T2DM) without cardiovascular disease were recruited. Participants received either 1350 mg CF or placebo capsules on 2 separate days in random order. Endothelial function was measured as flow-mediated dilation (FMD) using ultrasound of the common FA and the BA before and 2 hours after interventions. The cutaneous microvasculature was assessed using optical coherence tomography angiography. Results: baseline FA-FMD and BA-FMD were significantly lower in T2DM (FA: 3.2 ± 1.1% [SD], BA: 4.8 ± 0.8%) compared to healthy (FA: 5.5 ± 0.7%, BA: 6.0 ± 0.8%); each p < 0.001. Whereas in healthy individuals FA-FMD did not significantly differ from BA-FMD (p = 0.144), FA-FMD was significantly lower than BA-FMD in T2DM (p = 0.003) indicating pronounced and additional endothelial dysfunction of lower limb arteries (FA-FMD/BA-FMD: 94 ± 14% [healthy] vs. 68 ± 22% [T2DM], p = 0.007). The baseline FA blood flow rate (0.42 ± 0.23 vs. 0.73 ± 0.35 l min-1, p = 0.037) and microvascular dilation in response to occlusion in hands and feet were significantly lower in T2DM subjects than in healthy ones. CF increased both FA- and BA-FMD at 2 hours, compared to placebo, in both healthy and T2DM subgroups (FA-FMD effect: 2.9 ± 1.4%, BA-FMD effect 3.0 ± 3.5%, each pintervention< 0.001). In parallel, baseline FA blood flow and microvascular diameter significantly increased in feet (3.5 ± 3.5 µm, pintervention< 0.001) but not hands. Systolic blood pressure and pulse wave velocity significantly decreased after CF in both subgroups (-7.2 ± 9.6 mmHg, pintervention = 0.004; -1.3 ± 1.3 m s-1, pintervention = 0.002). Conclusions: individuals with T2DM exhibit decreased endothelial function that is more pronounced in the femoral than in the brachial artery. CFs increase endothelial function not only in the BA but also the FA both in healthy individuals and in those with T2DM who are at increased risk of developing lower extremity PAD and foot ulcers.


Subject(s)
Cacao , Diabetes Mellitus, Type 2 , Brachial Artery/physiology , Cross-Over Studies , Diabetes Mellitus, Type 2/drug therapy , Endothelium, Vascular , Humans , Lower Extremity/blood supply , Polyphenols/pharmacology , Pulse Wave Analysis , Vasodilation
8.
J Biomed Opt ; 27(7)2022 07.
Article in English | MEDLINE | ID: mdl-35831923

ABSTRACT

SIGNIFICANCE: Imaging needles consist of highly miniaturized focusing optics encased within a hypodermic needle. The needles may be inserted tens of millimeters into tissue and have the potential to visualize diseased cells well beyond the penetration depth of optical techniques applied externally. Multimodal imaging needles acquire multiple types of optical signals to differentiate cell types. However, their use has not previously been demonstrated with live cells. AIM: We demonstrate the ability of a multimodal imaging needle to differentiate cell types through simultaneous optical coherence tomography (OCT) and fluorescence imaging. APPROACH: We characterize the performance of a multimodal imaging needle. This is paired with a fluorescent analog of the therapeutic drug, tamoxifen, which enables cell-specific fluorescent labeling of estrogen receptor-positive (ER+) breast cancer cells. We perform simultaneous OCT and fluorescence in situ imaging on MCF-7 ER+ breast cancer cells and MDA-MB-231 ER- cells. Images are compared against unlabeled control samples and correlated with standard confocal microscopy images. RESULTS: We establish the feasibility of imaging live cells with these miniaturized imaging probes by showing clear differentiation between cancerous cells. CONCLUSIONS: Imaging needles have the potential to aid in the detection of specific cancer cells within solid tissue.


Subject(s)
Breast Neoplasms , Tomography, Optical Coherence , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Female , Humans , Multimodal Imaging , Needles , Tamoxifen/pharmacology , Tomography, Optical Coherence/methods
9.
Rev Sci Instrum ; 93(4): 044101, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35489887

ABSTRACT

Mammographic breast density is a strong breast cancer risk factor, and its routine clinical measurement could potentially be used to identify women at higher risk of breast cancer and/or monitor primary prevention strategies. Previous reports of optical breast spectroscopy (OBS), a novel approach to measuring breast density, demonstrated that it is safe (no ionizing radiation), portable, low-cost, and does not require image interpretation but have been limited to small, single-center studies. Reference measurements taken on a phantom breast prior to and after each woman's OBS assessment are required for the calibration of the system transfer function as a part of processing participant data. To inform the validity of participant data, a detailed description of the reference measurements and a repeatability analysis of these measurements taken before and after participant assessment is presented. Reference measurements for OBS from 539 women aged 18-40 years were obtained as a part of a high-throughput epidemiological pilot study. Of these, measurements from 20 women with no useable data due to device failure (3.7%) were excluded and from another 12 women due to user error. The intra-class correlation (ICC) within complete pairs of reference data (taken before and after assessment) was high (all ICC > 0.84). The analysis presented here confirms the OBS participant data as valid for use in ongoing epidemiological research, providing further supporting evidence of OBS as a measure of breast density. A novel method of measuring breast density is needed to bridge large gaps in the knowledge of breast density in younger women and its relation to later-life breast cancer risk.


Subject(s)
Breast Neoplasms , Mammography , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Humans , Male , Pilot Projects , Spectrum Analysis
10.
Light Sci Appl ; 11(1): 63, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35304441

ABSTRACT

The visualization and assessment of retinal microvasculature are important in the study, diagnosis, monitoring, and guidance of treatment of ocular and systemic diseases. With the introduction of optical coherence tomography angiography (OCTA), it has become possible to visualize the retinal microvasculature volumetrically and without a contrast agent. Many lab-based and commercial clinical instruments, imaging protocols and data analysis methods and metrics, have been applied, often inconsistently, resulting in a confusing picture that represents a major barrier to progress in applying OCTA to reduce the burden of disease. Open data and software sharing, and cross-comparison and pooling of data from different studies are rare. These inabilities have impeded building the large databases of annotated OCTA images of healthy and diseased retinas that are necessary to study and define characteristics of specific conditions. This paper addresses the steps needed to standardize OCTA imaging of the human retina to address these limitations. Through review of the OCTA literature, we identify issues and inconsistencies and propose minimum standards for imaging protocols, data analysis methods, metrics, reporting of findings, and clinical practice and, where this is not possible, we identify areas that require further investigation. We hope that this paper will encourage the unification of imaging protocols in OCTA, promote transparency in the process of data collection, analysis, and reporting, and facilitate increasing the impact of OCTA on retinal healthcare delivery and life science investigations.

11.
PLoS One ; 16(12): e0261052, 2021.
Article in English | MEDLINE | ID: mdl-34882760

ABSTRACT

Optical coherence tomography angiography (OCTA) performs non-invasive visualization and characterization of microvasculature in research and clinical applications mainly in ophthalmology and dermatology. A wide variety of instruments, imaging protocols, processing methods and metrics have been used to describe the microvasculature, such that comparing different study outcomes is currently not feasible. With the goal of contributing to standardization of OCTA data analysis, we report a user-friendly, open-source toolbox, OCTAVA (OCTA Vascular Analyzer), to automate the pre-processing, segmentation, and quantitative analysis of en face OCTA maximum intensity projection images in a standardized workflow. We present each analysis step, including optimization of filtering and choice of segmentation algorithm, and definition of metrics. We perform quantitative analysis of OCTA images from different commercial and non-commercial instruments and samples and show OCTAVA can accurately and reproducibly determine metrics for characterization of microvasculature. Wide adoption could enable studies and aggregation of data on a scale sufficient to develop reliable microvascular biomarkers for early detection, and to guide treatment, of microvascular disease.


Subject(s)
Algorithms , Forearm/diagnostic imaging , Hand/diagnostic imaging , Image Processing, Computer-Assisted/methods , Microvessels/diagnostic imaging , Tomography, Optical Coherence/methods , Adult , Forearm/blood supply , Hand/blood supply , Healthy Volunteers , Humans , Middle Aged , Signal-To-Noise Ratio
12.
Transl Vis Sci Technol ; 10(6): 16, 2021 05 03.
Article in English | MEDLINE | ID: mdl-34111262

ABSTRACT

Purpose: Microperimetry measures differential light sensitivity (DLS) at specific retinal locations. The aim of this study is to examine the variation in DLS across the macula and the contribution to this variation of cone distribution metrics and retinal eccentricity. Methods: Forty healthy eyes of 40 subjects were examined by microperimetry (MAIA) and adaptive optics imaging (rtx1). Retinal DLS was measured using the grid patterns: foveal (2°-3°), macular (3°-7°), and meridional (2°-8° on horizontal and vertical meridians). Cone density (CD), distribution regularity, and intercone distance (ICD) were calculated at the respective test loci coordinates. Linear mixed-effects regression was used to examine the association between cone distribution metrics and loci eccentricity, and retinal DLS. Results: An eccentricity-dependent reduction in DLS was observed on all MAIA grids, which was greatest at the foveal-parafoveal junction (2°-3°) (-0.58 dB per degree, 95% confidence interval [CI]; -0.91 to -0.24 dB, P < 0.01). Retinal DLS across the meridional grid changed significantly with each 1000 cells/deg2 change in CD (0.85 dB, 95% CI; 0.10 to 1.61 dB, P = 0.03), but not with each arcmin change in ICD (1.36 dB, 95% CI; -2.93 to 0.20 dB, P = 0.09). Conclusions: We demonstrate significant variation in DLS across the macula. Topographical change in cone separation is an important determinant of the variation in DLS at the foveal-parafoveal junction. We caution the extrapolation of changes in DLS measurements to cone distribution because the relationship between these variables is complex. Translational Relevance: Cone density is an independent determinant of DLS in the foveal-parafoveal junction in healthy eyes.


Subject(s)
Photophobia , Retinal Cone Photoreceptor Cells , Cell Count , Healthy Volunteers , Humans , Visual Acuity
13.
Opt Lett ; 45(17): 4919-4922, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32870890

ABSTRACT

Recent progress has enabled the reconstruction of the local (i.e., depth-resolved) optic axis (OAx) of biological tissue from measurements made with polarization-sensitive optical coherence tomography (PS-OCT). Here we demonstrate local OAx imaging in healthy human skin in vivo. The images reveal dense, weaving patterns that are imperceptible in OCT intensity tomograms or conventional PS-OCT metrics and that suggest a mesh-like tissue organization, consistent with the morphology of dermal collagen. Using co-registered polarization-sensitive optical coherence microscopy, we furthermore investigated the impact of spatial resolution on the recovered OAx patterns and confirmed their consistency. OAx orientation as a contrast mechanism merits further exploration for applications in dermatology.


Subject(s)
Optical Phenomena , Skin/cytology , Adult , Humans , Image Processing, Computer-Assisted , Skin/diagnostic imaging , Tomography, Optical Coherence
14.
J Biomed Opt ; 25(9)2020 09.
Article in English | MEDLINE | ID: mdl-32935499

ABSTRACT

SIGNIFICANCE: Pulsatility is a vital characteristic of the cardiovascular system. Characterization of the pulsatility pattern locally in the peripheral microvasculature is currently not readily available and would provide an additional source of information, which may prove important in understanding the pathophysiology of arterial stiffening, vascular ageing, and their linkage with cardiovascular disease development. AIM: We aim to confirm the suitability of speckle decorrelation optical coherence tomography angiography (OCTA) under various noncontact/contact scanning protocols for the visualization of pulsatility patterns in vessel-free tissue and in the microvasculature of peripheral human skin. RESULTS: Results from five healthy subjects show distinct pulsatile patterns both in vessel-free tissue with either noncontact or contact imaging and in individual microvessels with contact imaging. Respectively, these patterns are likely caused by the pulsatile pressure and pulsatile blood flow. The pulse rates show good agreement with those from pulse oximetry, confirming that the pulsatile signatures reflect pulsatile hemodynamics. CONCLUSIONS: This study demonstrates the potential of speckle decorrelation OCTA for measuring localized peripheral cutaneous pulsatility and defines scanning protocols necessary to undertake such measurements. Noncontact imaging should be used for the study of pulsatility in vessel-free tissue and contact imaging with strong mechanical coupling in individual microvessels. Further studies of microcirculation based upon this method and protocols are warranted.


Subject(s)
Angiography , Tomography, Optical Coherence , Humans , Microcirculation , Microvessels/diagnostic imaging , Skin/diagnostic imaging
15.
J Biomed Opt ; 25(9)2020 09.
Article in English | MEDLINE | ID: mdl-32914607

ABSTRACT

SIGNIFICANCE: To advance our understanding of the contrast observed when imaging with polarization-sensitive optical coherence tomography (PS-OCT) and its correlation with oral cancerous pathologies, a detailed comparison with histology provided via ex vivo fixed tissue is required. The effects of tissue fixation, however, on such polarization-based contrast have not yet been investigated. AIM: A study was performed to assess the impact of tissue fixation on depth-resolved (i.e., local) birefringence measured with PS-OCT. APPROACH: A PS-OCT system based on depth-encoded polarization multiplexing and polarization-diverse detection was used to measure the Jones matrix of a sample. A wide variety of ex vivo samples were measured freshly after excision and 24 h after fixation, consistent with standard pathology. Some samples were also measured 48 h after fixation. RESULTS: The tissue fixation does not diminish the birefringence contrast. Statistically significant changes were observed in 11 out of 12 samples; these changes represented an increase in contrast, overall, by 11% on average. CONCLUSIONS: We conclude that the fixed samples are suitable for studies seeking a deeper understanding of birefringence contrast in oral tissue pathology. The enhancement of contrast removes the need to image immediately postexcision and will facilitate future investigations with PS-OCT and other advanced polarization-sensitive microscopy methods, such as mapping of the local optic axis with PS-OCT and PS-optical coherence microscopy.


Subject(s)
Mouth , Tomography, Optical Coherence , Birefringence , Microscopy, Polarization , Tissue Fixation
16.
J Biophotonics ; 13(9): e202000007, 2020 09.
Article in English | MEDLINE | ID: mdl-32418315

ABSTRACT

We show that polarization-sensitive optical coherence tomography angiography (PS-OCTA) based on full Jones matrix assessment of speckle decorrelation offers improved contrast and depth of vessel imaging over conventional OCTA. We determine how best to combine the individual Jones matrix elements and compare the resulting image quality to that of a conventional OCT scanner by co-locating and imaging the same skin locations with closely matched scanning setups. Vessel projection images from finger and forearm skin demonstrate the benefits of Jones matrix-based PS-OCTA. Our study provides a promising starting point and a useful reference for future pre-clinical and clinical applications of Jones matrix-based PS-OCTA.


Subject(s)
Angiography , Tomography, Optical Coherence
17.
Biomed Opt Express ; 11(2): 1122-1138, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32206403

ABSTRACT

The organization of fibrillar tissue on the micrometer scale carries direct implications for health and disease but remains difficult to assess in vivo. Polarization-sensitive optical coherence tomography measures birefringence, which relates to the microscopic arrangement of fibrillar tissue components. Here, we demonstrate a critical improvement in leveraging this contrast mechanism by employing the improved spatial resolution of focus-extended optical coherence microscopy (1.4 µm axially in air and 1.6 µm laterally, over more than 70 µm depth of field). Vectorial birefringence imaging of sheep cornea ex vivo reveals its lamellar organization into thin sections with distinct local optic axis orientations, paving the way to resolving similar features in vivo.

18.
EMBO Mol Med ; 11(12): e10923, 2019 12.
Article in English | MEDLINE | ID: mdl-31709774

ABSTRACT

High extracellular matrix (ECM) content in solid cancers impairs tumour perfusion and thus access of imaging and therapeutic agents. We have devised a new approach to degrade tumour ECM, which improves uptake of circulating compounds. We target the immune-modulating cytokine, tumour necrosis factor alpha (TNFα), to tumours using a newly discovered peptide ligand referred to as CSG. This peptide binds to laminin-nidogen complexes in the ECM of mouse and human carcinomas with little or no peptide detected in normal tissues, and it selectively delivers a recombinant TNFα-CSG fusion protein to tumour ECM in tumour-bearing mice. Intravenously injected TNFα-CSG triggered robust immune cell infiltration in mouse tumours, particularly in the ECM-rich zones. The immune cell influx was accompanied by extensive ECM degradation, reduction in tumour stiffness, dilation of tumour blood vessels, improved perfusion and greater intratumoral uptake of the contrast agents gadoteridol and iron oxide nanoparticles. Suppressed tumour growth and prolonged survival of tumour-bearing mice were observed. These effects were attainable without the usually severe toxic side effects of TNFα.


Subject(s)
Extracellular Matrix/metabolism , Animals , Cell Line , Cell Surface Display Techniques , Contrast Media/metabolism , Female , Ferric Compounds/metabolism , Gadolinium/metabolism , Heterocyclic Compounds/metabolism , Humans , Male , Mice , Nanoparticles/metabolism , Organometallic Compounds/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Biomed Opt Express ; 10(10): 5159-5161, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31646038

ABSTRACT

This feature issue of Biomedical Optics Express represents a cross-section of the most recent work in tissue optics, including exciting developments in tissue optical clearing, deep tissue imaging, optical elastography, nanophotonics in tissue, and therapeutic applications of light, amongst others. A collection of 33 papers provides a comprehensive overview of current research in tissue optics, much of it inspired and informed by the pioneering work of Prof. Valery Tuchin. The issue contains three invited manuscripts and several mini-reviews that we hope will benefit researchers in this exciting area.

20.
Biomed Opt Express ; 10(4): 1942-1956, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31086712

ABSTRACT

Stromal collagen organization has been identified as a potential prognostic indicator in a variety of cancers and other diseases accompanied by fibrosis. Changes in the connective tissue are increasingly considered for grading dysplasia and progress of oral squamous cell carcinoma, investigated mainly ex vivo by histopathology. In this study, polarization-sensitive optical coherence tomography (PS-OCT) with local phase retardation imaging is used for the first time to visualize depth-resolved (i.e., local) birefringence of healthy human oral mucosa in vivo. Depth-resolved birefringence is shown to reveal the expected local collagen organization. To demonstrate proof-of-principle, 3D image stacks were acquired at labial and lingual locations of the oral mucosa, chosen as those most commonly affected by cancerous alterations. To enable an intuitive evaluation of the birefringence images suitable for clinical application, color depth-encoded en-face projections were generated. Compared to en-face views of intensity or conventional cumulative phase retardation, we show that this novel approach offers improved visualization of the mucosal connective tissue layer in general, and reveals the collagen fiber architecture in particular. This study provides the basis for future prospective pathological and comparative in vivo studies non-invasively assessing stromal changes in conspicuous and cancerous oral lesions at different stages.

SELECTION OF CITATIONS
SEARCH DETAIL
...