Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 54(7): 2255-65, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21375264

ABSTRACT

The development of a new series of p38α inhibitors resulted in the identification of two clinical candidates, one of which was advanced into a phase 2 clinical study for rheumatoid arthritis. The original lead, an lck inhibitor that also potently inhibited p38α, was a screening hit from our kinase inhibitor library. This manuscript describes the optimization of the lead to p38-selective examples with good pharmacokinetic properties.


Subject(s)
Drug Discovery/methods , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Pyridones/pharmacology , Pyridones/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Administration, Oral , Arthritis, Rheumatoid/drug therapy , Biological Availability , Cell Line , Clinical Trials as Topic , Humans , Mitogen-Activated Protein Kinase 14/chemistry , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyridones/administration & dosage , Pyridones/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Structure-Activity Relationship , Substrate Specificity
2.
J Med Chem ; 49(5): 1562-75, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16509574

ABSTRACT

A novel class of highly selective inhibitors of p38 MAP kinase was discovered from high throughput screening. The synthesis and optimization of a series of 5-amino-N-phenyl-1H-pyrazol-4-yl-3-phenylmethanones is described. An X-ray crystal structure of this series bound in the ATP binding pocket of unphosphorylated p38alpha established the presence of a unique hydrogen bond between the exocyclic amine of the inhibitor and threonine 106 which likely contributes to the selectivity for p38. The crystallographic information was used to optimize the potency and physicochemical properties of the series. The incorporation of the 2,3-dihydroxypropoxy moiety on the pyrazole scaffold resulted in a compound with excellent drug-like properties including high oral bioavailability. These efforts identified 63 (RO3201195) as an orally bioavailable and highly selective inhibitor of p38 which was selected for advancement into Phase I clinical trials.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Pyrazoles/chemical synthesis , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Administration, Oral , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Binding Sites , Biological Availability , Cell Line , Crystallography, X-Ray , Dogs , Female , Haplorhini , Humans , Interleukin-1/antagonists & inhibitors , Interleukin-1/biosynthesis , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Models, Molecular , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats , Rats, Inbred Lew , Stereoisomerism , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL